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Summary  1 

Summary 

This thesis deals with repair capacities and job priorities in repairable spare parts supply 

systems. Such supply systems can be used to support many different types of technically 

advanced systems, such as computer systems, medical equipment and military systems. The 

high price of some components and modules makes repair more profitable than scrap and 

replace. Upon system failure, it is important that spare parts are available, so that off-line 

repair is possible, thereby avoiding system down time. A key issue in such systems is to 

determine adequate spare part stock levels. This is a complex problem, because we generally 

have to take into account the technical system structure (should we replace modules 

containing a failed component or should we first disassemble and replace just a component 

level?) as well as the geographical distribution structure. Hence, we should decide at which 

level in the product structure spares are needed and in which amount we will store them at 

which location. Clearly, there is a trade-off between the system availability and spare part 

investment.  

A large range of mathematical models to support such decisions has been developed 

since the sixties. Most models do not explicitly take into account repair capacities. As a 

consequence, it is hard to find out how the system performance is influenced by extending or 

reducing repair capacities. Besides, it is not possible to find out to which extend efficiency 

gain is possible by proper priority setting. A key idea when starting our research was that we 

can reduce inventory investment of extremely expensive spare parts by giving them high 

priority during repair, at the expense of higher stock levels of cheaper items, caused by longer 

repair throughput times. To find out to which extend this is true, we had to develop more 

detailed repair shop models than have been used up to now in the literature. When selecting a 

suitable queueing model for the repair shop, we found out that no suitable results were 

available in the literature. Therefore, a significant part of the research in this thesis deals with 

new queueing results that we needed to analyse spare part supply systems with finite repair 

capacities and repair job priorities. We used these results for three purposes: (1) to examine 

the impact of finite repair capacities on the spare part inventory optimisation, (2) to make a 

trade-off between spare part investment and repair capacity investment, and (3) to find rules 

for repair priority setting. To test and validate our new methods, we conducted extensive 

numerical results in each step of our research, heavily using discrete event simulation as 
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benchmark. A case from the Royal Netherlands Navy inspired us when setting up our 

numerical experiments. 

The models of spare parts supply system described in this thesis are based on the well-

known VARI-METRIC model by Sherbrooke. Therefore, after presenting our research design 

and reviewing the relevant literature in Chapter 1, we summarise in Chapter 2 the key issues 

of VARI-METRIC and we introduce the main notation that we use within this thesis. Also, 

we motivate our choice to model repair shops by Markovian multi-class, multi-server queues, 

either with first-come, first serve discipline or with preemptive priorities. 

As model for repair shops with finite capacity, we take a multi-class, multi-server queue 

in which repair jobs are processed in the order of arrival. The multi-class nature of this model 

means that various spare parts, each having their own interarrival and service time, are 

sharing the same repair capacity. In Chapter 3, we describe an exact solution of this model. 

Our procedure requires the solution of quadratic eigenvalue equations of high dimension, 

which grows exponentially with the number of classes and servers in the system. Therefore,  

we have also developed an approximation method that only requires solving a system of 

linear equations with a dimension equal to the number of classes. Numerical experiments 

show good results, especially for high utilisation rates. The queueing results that we obtain 

are more generally applicable, e.g. to analyse production, service and telecommunication, that 

are processing multiple job types. 

In Chapter 4, we examine to which extend we can improve VARI-METRIC using our 

finite capacity repair shop model. We demonstrate that the classical VARI-METRIC model 

usually overestimates the system availability, whereas our method provides an estimate for 

the system availability that is much closer to reality. Also, we conclude that our models gives 

a better distribution of spare parts, especially if the repair shops only have a few servers and 

if the utilisation of repair shop is high.   

It is not surprising that a high repair shop utilisation leads to high spare part stock levels. 

Therefore, we analyse added repair server capacities as decision variables in Chapter 5. This 

gives rise to an extension of VARI-METRIC. To this end, we present a nested optimisation 

procedure for spare part stock levels and repair capacities. We illustrate our optimisation 

heuristic with some numerical experiments. A remarkable finding is that the optimal 

distribution of budget between repair capacities and spare parts stocks seems to be almost 

independent of the price of repair capacity relatively to spare parts prices. If the price of 

repair capacity increases, we take less capacity and more stocks, but in the end the total 
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budget spent to attain the target availability increases and a more or less fixed percentage of 

this budget is spent to repair capacity. 

As mentioned before, the introduction of repair priorities can reduce throughput times of 

expensive items and, hence, the stock levels needed. To be able to use the repair priorities in 

the spare parts supply systems, we introduce in Chapter 6 a multi-class, multi-server 

queueing model with preemptive priorities and two priority levels (high and low). Preemptive 

priority means that a high priority item may push a low priority item out of service if it finds 

all servers busy upon arrival while some of the servers are working on low priority items. The 

repair process of the postponed items is resumed if there is a free server and no high priority 

items are in the queue anymore. We present an iterative method to solve this priority 

queueing model. Our approach is exact, but we encounter an approximation error because we 

can only use a finite number of iterations. We have shown that our method performs quite 

well, even for a moderate number (~20) of iterations. As a side result, we show in Chapter 7 

how we can analyse multi-class, multi-server priority queueing models with preemptive and 

non-preemptive priority rules if high priority items are immediately outsourced if they do not 

find a free server upon arrival.  

Finally, we reach our main research goal in Chapter 8, where we embedded our priority 

queueing model from Chapter 6 in the VARI-METRIC framework. We present the analysis 

of the spare parts supply system with finite amounts of repair servers and preemptive repair 

priorities at the repair facilities using the queueing models presented in Chapter 6. We present 

a few heuristics to assign priority to repairable modules and components sharing the same 

repair capacity, based on mean service times and item prices. We show that items with the 

highest price / service time ratio should usually receive high priority. We also show that it 

does not harm to separate priority assignment from spare part stock optimisation. An 

appropriate sequential procedure yields results that are only little worse than enumeration, 

whereas the computation requirements are much less. Therefore, we conclude that sequential 

optimisation is a practical approach. Further numerical experiments revealed that it is 

possible to reduce the budget for spare parts by 10%-20% using repair priorities. In a few 

extreme cases, we even found 70% budget reduction. 

 

 





   

Chapter 1 

Introduction 

 
In this chapter we discuss the design of our research and the positioning in the literature. We 

formulate and motivate the research questions that we will answer in this thesis and we 

explain what is new compared with existing literature. Further, we give an overview of the 

remainder of this thesis. 
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1.1 Motivation 

1.1.1 Service part logistics 

Technically advanced systems play an ever more important role in society. As a consequence, 

the availability of such systems may strongly affect daily operations. This applies to e.g. 

heavily automated production processes, computer systems, medical equipment, and military 

systems. Downtime of critical equipment may have serious consequences, e.g. in terms of 

loss of production, quality reduction in health care or ineffective military missions. Various 

measures can be taken to reduce the amount of system downtime, such as system redundancy, 

appropriate preventive maintenance and effective corrective maintenance. Especially with 

respect to the latter, fast supply of the service parts required is essential. Here we define 

service parts as all parts that are used to maintain systems, both spare parts to replace failed 

parts and diagnostic items that are used to analyse the system performance and to find failure 

causes. 

The importance of service parts management has increased in the past decades. One 

reason is the fact that system availability and high quality after sales service have become 

important criteria when selecting suppliers of technically advanced systems. A second reason 

is the increasing value of service part inventory investment. A survey by Cohen et al. (1997) 

reports that service parts inventories equal 8.75% of the value of product sales in their 

sample, being over $23 mln. inventory investment on average. In this survey, the following 

characteristics and trends in service delivery organisations are observed: 

- a large and geographically dispersed installed base; 

- a large number of service parts to be stocked, varying between 2,500 and 300,000 in the 

sample; 

- increasing costs of service parts due to increasing complexity and modularity, in the 

sample being $270 on average with exceptions up to several hundreds thousands of 

dollars;  

- a high part obsolescence rate caused by short product life cycles; 

- a large and increasing fraction of slow moving service parts, caused by increased 

system customisation, and design improvement; the average inventory turnover in the 

sample equals 0.87 parts per year, hence there are many parts having a demand rate less 

than once per year 
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As a consequence of the increasing costs of spare parts (third characteristic above), it is 

worthwhile to consider repair rather than scrap and replace. In the survey by Cohen et al. 

(1997), it appears that in the sample 27.2% of the parts are repairable, i.e. parts for which 

repair is technically possible and economically profitable. Although this suggests that 

consumables are more important, one should keep in mind that repairables are generally more 

expensive, so the share of repairables in total service part investment is probably considerably 

higher.  

The spare parts are needed to maintain an installed base of technical systems. Examples 

are aircrafts, locomotives, frigates and computer systems. The product structure of failed 

units (assemblies, subassemblies) is an important characteristic to be taken into account when 

analysing service part networks. A system is only available if all critical parts function well. 

Therefore, the availability of all parts and modules in the (multi-layered) product structure 

simultaneously determine the availability. This is generally addressed in literature as multi-

indenture problems.  

Service parts are often supplied via a multi-echelon distribution network, i.e. a 

hierarchical network of stocking locations through which service parts are supplied to the 

installed base at customer’s sites. A reason to have a multi-echelon structure is the need for 

both local stocks close to the customer’s sites in order to achieve fast supply and the need for 

stock centralisation to reduce holding costs. Cohen et al. (1997) report that three-echelon 

networks are prevalent in their sample followed by two-echelon systems. Four-echelon 

networks occur in practice as well. There is a trend however to reduce the number of 

echelons and the number of locations per echelon in order to reduce fixed warehousing costs 

and service parts obsolescence costs. This striving for lean and efficient service part networks 

is facilitated by e.g. stocking essential parts at the customer sites and using possibilities for 

fast emergency transportation. 

All these characteristics cause that service parts management is an increasingly 

important, yet complex task. A key challenge is to attain high availability of the installed base 

at low service costs. These service costs include costs for stock holding, warehousing, 

transportation, service engineers, repair shops and overhead. Effective and efficient spare part 

management means that several design choices have to be made (e.g. network structure) and 

a suitable logistical control structure has to be developed. In this thesis, we focus on some 

logistics control issues, given strategic design choices such as product design and distribution 

and return network design. 
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1.1.2 Logistic control issues 

Logistic control in spare part networks consists of a variety of decisions. Verrijdt (1997) 

discusses these decisions and structures them in a framework for control that he calls the 

Service Part Supply System (SPSS) for repairable service parts. We will summarise this 

framework and select the issues on which we will focus in this thesis.  
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Figure 1.1. A Service Part Supply System with central repair facility, cf. Verrijdt (1997) 

 

According to Verrijdt (1997), the Service Part Supply System "describes the operational 

processes that service parts go through in a repair and distribution network", see Figure 1.1. 

The network consists of a supply subsystem and a repair subsystem. The parts needed to 

maintain the installed base are supplied via a multi-echelon distribution network. Figure 1.1 

shows a three-echelon network, consisting of a central warehouse, national warehouses and 

local warehouses. Upon failure, a part is dispatched to a location where it can be repaired, 

either in an own repair shop or by a third party (outsourcing). After repair, the part is 

forwarded to the distribution network for re-use. If it is technically not feasible or 

economically not profitable to repair the part, it is scrapped and replaced by a new part that is 

ordered from a supplier. 

Although Figure 1.1 shows a single repair facility only, the repair subsystem can have a 

similar network structure as the distribution subsystem, see Figure 1.2. Repair facilities may 

exist at a local and/or a central level in the network. A reasonable option is to have repair 

shops close to the customer sites for relatively simple repairs. Defects that require specific 
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expertise and/or tools can be handled at a central level, because of the relatively high costs of 

such special resources. When an item fails, it has to be diagnosed to find out which repair 

facilities are able to solve the problem. Next, the item is dispatched to a suitable repair shop. 

 

local
warehouses 

national
warehouses 

central 
warehouse  

Installed 
base 

supplier 

scrap 

 repair

 repair

 repair

 repair

 repair 

 

Figure 1.2. The Service Part Supply System with local repair facilities 

Verrijdt (1997) distinguished six so-called flexibility options that can be applied to 

increase the performance of the system: 

 

Repair subsystem 

1. Return flow flexibility covers decisions to control the return flow of failed items from the 

installed base to the repair facilities. Examples are: 

a. should we ship the parts immediately after failure to the repair shops (one-by-one) or 

should we wait until we have a certain minimum batch size? This is a trade-off 

between holding costs (immediate shipment reduces throughput times and hence the 

number of items in repair) and transportation costs (batching reduces the number of 

shipments). 

b. should we return failed parts via the distribution network or should we use a separate 

return network? In the first case, we return items from the customer in the reversed 

direction order through the distribution network until it arrives at the appropriate 

repair shop. In the second case, we reduce return times by direct shipment to the 

repair shops.  

2. Work order release flexibility covers the release of repair orders to the repair shops. 

Examples are: 

a. should parts be repaired one-by-one or in batches? 



1.1 Motivation  11 

b. which repair shop at which location should repair a failed part? 

3. Repair shop flexibility covers the capacity of repair shops as well as planning and 

scheduling of repair shops. Examples are: 

a. which capacity should be assigned to a repair shop? 

b. which repair jobs should have high priority and which low priority? 

c. to which extent should we use flexible manpower planning, such as variable working 

times and outsourcing of activities? 

 

Supply subsystem 

4. Allocation flexibility covers the allocation of part inventories in the distribution network. 

Examples are: 

a. at which locations should we keep a part on stock (central / local)? 

b. which norm stocks do we need for each part at each location? 

5. Pooling flexibility covers possible joint use of inventories at the same level in the supply 

network, which is also known as lateral supply (e.g., sharing stocks between national 

warehouses). Examples are: 

a. under which circumstances should we use regular supply of parts and when should we 

use lateral supply? 

b. which locations should we check in which order for lateral supply of parts in case of 

an-out-of stock situation? 

6. Direct shipment flexibility covers emergency shipments from an inventory location at a 

higher level in the supply chain. Similarly to pooling flexibility, decisions should be taken 

on item routing and criteria for use of (expensive) direct shipment instead of regular 

supply.  

 

The tactical and operational decisions in the Service Part Supply System framework directly 

influence inventory holding costs, (normal and emergency) transportation costs and out-of-

stock costs. Besides, costs for information technology and organisational complexity may 

play its role.  

In the last decades, many models have been developed to support logistic decisions as 

stated above. Most research focuses on one flexibility option, sometimes on the combination 

of two flexibility options. Especially, much attention has been paid to allocation flexibility. In 

this thesis, we will focus on the interaction between allocation flexibility and repair shop 

flexibility. 
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As mentioned above, stock allocation deals with decisions about which parts to stock at 

which locations in the network in which amounts. In service networks, the stock allocation is 

different from traditional inventory models, because the relevant performance measure is the 

availability of the installed base rather than part fill rates. A specific availability level can be 

attained by several combinations of part fill rates. One option is to use an equal fill rate for 

each part such that the target availability is attained. A more clever option is to focus on high 

fill rates for cheap, slow movers, so that relatively low fill rates (and hence low stock levels) 

of expensive, fast movers are sufficient. In this way, the same system availability can be 

obtained at lower costs.  

Many models for these kinds of stock allocation problem have been developed in the 

past decades. Already in the 60’s, Sherbrooke (1968) developed the famous Multi-Echelon 

Technique for Recoverable Item Control (METRIC). This model aims to allocate a fixed 

budget for spare parts, such that the availability of the installed base is maximised. The focus 

is the initial investment in spare parts at the start of a product life cycle. METRIC has been 

the basis for a lot of extensions and applications later on. One of these extensions, the VARI-

METRIC model proposed by Slay (1984) and improved later by Graves (1985), fits well as a 

framework for the spare parts models with finite repair capacity that we will develop. An 

overview of the most important models based on the METRIC approach is given in 

Sherbrooke (1992). A key assumption in the METRIC models is that the repair shops have 

infinite capacity and that they can be modelled as M/G/∞ queues. Therefore, we can exploit 

Palm's theorem that states that the number of items in an M/G/∞ queue is Poisson distributed 

(Palm, 1938). This simplifies stock analysis of spare part networks. In the next section, we 

will discuss the validity of the infinite capacity assumption from a practical point of view. 

1.1.3 The role of repair shops with finite capacity  

Although it is generally not true that all repair shops in the network have infinite capacity, 

this key assumption of the (VARI-)METRIC class of models may be justified by some 

arguments. Firstly, in some situations the repair of service parts is just one of the activities of 

the repairmen, e.g. next to preventive maintenance. If service part repair gets highest priority, 

the effect of finite capacity can be negligible. However, this is only true if service part repair 

is not a major task for each repairman. Besides, preventive maintenance can have high 

priority as well, e.g. when preventive maintenance of a production system has to be carried 

out during some limited time period outside regular production hours. Secondly, in some 

situations the repair shop capacity is flexible, e.g. because the repairmen work overtime if the 
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workload is high or because it is possible to outsource service part repair if the workload is 

high. Using this flexible capacity, the repair shop has virtually infinite resources. However, 

working overtime may cause high overtime costs, while outsourcing is not always possible, 

in particular if the parts or modules are technically complicated and repair requires specific 

skills. Thirdly, the finite capacity could be taken into account by measuring the actual 

throughput time in the repair shop and plugging these values into the model as gross repair 

times (= net repair time plus waiting time). Although this seems to be a simple and 

straightforward approach, the throughput time measured is only valid under the current 

circumstances. Obviously the throughput times depend on service part demand, return 

procedures and repair shop capacity. Therefore this procedure is not suitable for what-if 

analyses, which is a serious drawback. 

Another reason to include finite repair capacity in the model is the following. Under 

finite capacity, the item throughput times can be influenced using appropriate priority setting. 

For example, expensive items can be given high priority, so that repair shop throughput times 

are short and hence the stock levels required can remain low. This is only possible at the 

expense of lower priority for the other (cheaper) items, so that these items will face longer 

throughput times and hence require higher stock levels. If the item values are very different, 

such priority setting might be worthwhile to consider in order to reduce the investment 

needed to obtain a target availability of the installed base or, equivalently, to attain a higher 

availability for the same budget. We expect that, in particular, this can be attractive if the 

repair shop utilisation is high, because then waiting times are significant and priorities 

influence waiting times only. To judge the benefits of repair priorities, we need models to 

quantify the relation between spare part inventories, repair capacities and repair job priorities. 

We have not found such integral models in the literature. 

Of course, the capacity effects have been recognised both in practice and in literature. 

Pyke (1990) discusses the impact of finite capacity and repair priority setting using discrete 

event simulation. He finds that applying appropriate priority rules can have significant impact 

on the system performance if the utilisation is high. An analytical method is not developed, 

however. De Haas and Verrijdt (1997) examine capacity effects and encounter heavily 

fluctuating work loads in the repair shops of the aircraft maintenance system they study, 

causing varying throughput times and frequent overtime and stress for the repair men. They 

suggest that the throughput times in the repair shop should be corrected for utilisation of 

repairmen. Although they consider various options for repair shop throughput times in their 

numerical illustration, they do not describe a method to quantify the relation between 
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utilisation and throughput time. Hence the issue how to deal exactly with finite capacity 

remains unsolved.  

Our choice to examine finite repair capacity is further motivated by Rustenburg et al. 

(2001), who state that “one of the most criticised assumptions on (VARI-)METRIC-models 

and their extensions is the assumption of unlimited repair capacity”. They put capacity 

restrictions on their agenda for research, but note that “the combination of capacitated multi-

indenture and multi-echelon structures however will require a substantial research effort”. We 

aim to contribute to this research effort with this thesis. 

1.2 Research design 

1.2.1 Research objective 

In section 1.1, we discussed the importance of inventory control in spare part networks, and 

we observed that there is a lack of appropriate models that facilitate a trade-off between spare 

part inventories, repair capacities and repair priorities. In line with the (VARI-)METRIC-

class of models, we focus on the initial supply of spare part inventories and the relation with 

repair capacity and job priorities. That is, we deal with logistic control at a tactical level. 

Based on the discussions above, we formulate our research objective as follows: 

 

to develop a set of tools for optimising repairable spare part inventory levels in multi-

echelon, multi-indenture networks with finite capacity repair shops, and to gain insight in 

the relation between inventories, repair capacities and repair priorities using these tools. 

 

Below, we discuss the important elements of our research objective.  

1. Tool: We aim to develop simple software prototypes, programmed in Delphi. The main 

purpose of these tools is to test our algorithms and to gain insight in the relation between 

inventories, capacities and priorities by conducting numerical experiments. Use by third 

parties is not directly facilitated, in the sense that we do not develop advanced user-

interfaces or database connections. We will verify and validate our algorithms by 

comparison to discrete simulation results. To this end, a simulation model will be 

developed in the object oriented simulation software eM-Plant (Tecnomatix, 2000).  

2. Optimising: As goal function, we will minimise the relevant costs needed to attain a target 

availability of the installed base. A key cost factor in our models is the initial investment 
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of spare parts and its relation to repair shop utilisation and priority assignment. In one 

model, we will explicitly include the costs of repair capacity to model an inventory-

capacity trade-off. 

3. Insight: We strive to gain insight for the following topics: 

• the impact of assuming infinite repair capacity on the stock levels and system 

availability if the actual repair capacities are finite;  

• the impact of repair shop utilisation on stock levels and stock distribution; 

• the relation between the preferable repair shop utilisation rate on one hand and the 

costs of spare parts and repair capacity on the other hand; 

• the reduction in the costs of spare parts provisioning that we can achieve using 

appropriate repair priorities, given fixed repair capacities. 

1.2.2 Research questions and approach 

To reach our objective, we define a number of research questions that we have to answer. 

These questions also define a logical sequence of research activities. Below each question, 

we discuss by what approach we are going to answer it. Between parentheses, the chapter is 

given that deals with the specific research question. 

 

1. Which model for finite capacity repair shops is appropriate to be embedded in the  

(VARI-)METRIC framework (Chapter 2)? 

When dealing with this question, we first discuss the (VARI-)METRIC framework for the 

initial allocation of repairable spare part inventories in service networks. The model 

assumptions, definitions and notation will be clarified. Also, we explain the optimisation 

algorithm for infinite capacity repair shops, based on Sherbrooke (1992) and Rustenburg 

(2000). Finally, we discuss the requirements for a finite capacity repair shop model that 

can be embedded in the (VARI-)METRIC framework and we choose an appropriate 

repair shop model: multi-class, multi-server queues with Poisson arrivals and class-

dependent exponential service time distributions.  

 

2. How do we analyse the selected repair shop model and how do we derive the 

performance characteristics needed for (VARI-)METRIC (Chapter 3)? 

It will appear that we need to analyse a queueing model for which the required 

performance characteristics are not yet available in the literature. Therefore, we develop 

our own method. We validate our method by comparison to discrete event simulation 
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results. We also evaluate its computational efficiency, because we need to calculate 

performance characteristics for several parameter settings during a (VARI-)METRIC-like 

optimisation routine. 

 

3. To which extent can we improve (VARI-)METRIC by introducing our queueing model for 

the finite capacity repair shops (Chapter 4)?  

We extend (VARI-)METRIC with finite capacity repair shops using our model from 

Chapter 3. We compare the system availability that is given by the traditional and the 

extended optimisation method to the actual availability. We estimate the actual 

performance characteristics using a discrete event simulation. To examine the impact of 

the infinite capacity assumption that is usually made, we conduct a numerical experiment 

comparing the traditional method with our extended variant. We measure the impact by 

(a) comparing the estimated availability to the actual (simulated) availability, and by (b) 

comparing the stock allocation under infinite and finite repair capacities. At this stage of 

our research, we do not deal with repair priorities yet. 

 

4. How can we choose an appropriate combination of spare part inventories and repair 

capacities (Chapter 5)? 

Repair shop capacity is not a given parameter in many cases. Therefore, we extend our 

algorithm from Chapter 4 by adding the capacities of the repair shops as decision 

variables and by adding the related costs to the optimisation criterion. We show that we 

can extend (VARI-)METRIC to a simultaneous capacity-inventory optimisation method. 

Using the tool that we develop, we can gain insight in the optimal utilisation of repair 

shops and the optimal allocation of budget between inventories and repair capacities. To 

this end, we conduct another numerical experiment.  

 

5. How do we extend and analyse our repair shop model to deal with repair priorities 

(Chapter 6 and 7)? 

To find out what we can gain by proper priority setting, we first need to extend our 

queueing model to account for repair job priorities. In Chapter 6, we present a method to 

analyse repair shops with two priority classes and preemptive priority of the high priority 

class over low priority class. The analysis is done along the same lines as in Chapter 3. 

We validate our method by comparison with results from discrete event simulation. We 

also discuss a variant of our model in which high priority jobs are outsourced if they 
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cannot be served immediately upon arrival (Chapter 7). In this chapter we discuss both 

preemptive and non-preemptive priority of the high priority class over low priority class. 

The outsourcing of the high priority items leads to a simplified analysis of the queueing 

model. We compare both models and we show the impact of outsourcing on the number 

of low priority items in the system. For the outsourcing case, we also compare the 

preemptive and the non-preemptive priority rule. 

 

6. To which extent can we reduce inventory investment by introducing repair priorities, and 

how should we allocate items to priority classes then (Chapter 8)? 

We extend our finite capacity variant of (VARI-)METRIC further to include repair shops 

with job priorities. Next, we discuss heuristics for simultaneous inventory optimisation 

and priority assignment. We use our method to examine the impact of priority assignment 

in a numerical experiment.  

 

By answering the last research question, we bring together the factors finite repair capacity, 

repair priorities and spare part inventories, thereby satisfying our objective as stated in 

section 1.2.1. As a summary of our research design, we give the relation between the research 

questions in Figure 1.3. The arrows in this figure show the order of the research topics. 
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Figure 1.3. Overview of research topics and their relations 
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1.2.3 Demarcation 

To control the project size, we need to make some choices on the boundaries of our research. 

This is done in the following way:  

1. We will focus on developing planning algorithms and to gain theoretical insight using 

these algorithms. This already requires a lot of effort, because only few results were 

available in the literature at the start of this research. Because a lot of methodology still 

has to be developed, this thesis has a strong operations research character. Although this 

leaves little time for case studies, we will use the problem setting from the US Navy 

(Sherbrooke, 1992) and the Royal Netherlands Navy (cf. Rustenburg, 2000) as test cases. 

2. We focus on spare parts, i.e. parts that are used to replace a failed item, and not on other 

service parts, e.g. tools and equipment that is needed for failure cause analysis and repair. 

3. We assume that the multi-indenture product structure (bill of material) and the multi-

echelon network structure are given.  

4. We focus on repairable items. Of course, it may occur that it is technically not possible or 

economically not profitable to repair. In that case, the failed item will be scrapped and 

replaced. Because our focus is to examine finite capacity repair shops and repair 

priorities, it does not make sense to take into account consumable items, i.e. items that are 

always scrapped after failure. 

5. As mentioned before, we focus on the initial stock allocation.  In fact, we assume a 

steady state situation in which failed items are either repaired or replaced if necessary, so 

that the number of items circulating through the network remains constant.  

We refer to Chapter 2 for a detailed overview of all assumptions that are commonly used in 

the (VARI-)METRIC-class of models and that we will use as well throughout this thesis. 

1.3 Positioning in the literature and our contributions 

In this section, we discuss the literature that is related to our research objective and questions. 

First, we describe some general literature on spare parts management and its applications 

(section 1.3.1). Section 1.3.2 deals with the (VARI-)METRIC class of models for repairable 

item inventory control. In section 1.3.3, we discuss the results on finite repair capacities in 

these models. Next, we address the issue of job priorities in finite capacity repair shops 

(section 1.3.4). As repair shops are modelled as queueing systems in such models, we discuss 
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relevant queueing systems in section 1.3.5. Finally, we state our contribution to literature in 

section 1.3.6. 

1.3.1 Spare part management  

Optimisation of repairable spare part supply networks has already been the subject of 

research for many years. Most effort has been spent to optimisation of stock levels. Results 

have been achieved for both consumables and repairables. Consumables are spare parts that 

are scrapped once they have failed. A line of research has been dedicated to this area, see 

Cohen et al. (1986, 1988, 1989, 1992). They focus on periodic review systems with batching. 

Their models have successfully been applied at IBM (Cohen et al, 1990). In the area of 

consumables, the decomposition approach of Hopp et al. (1999) is worthwhile to mention. 

They minimise inventory costs of consumable spare parts under service constraints, 

representing the total delay per facility because of lack of spare parts. Another approach is 

discrete event simulation, see e.g. Seyboth (1997) for an application to spare part supply of 

trucks. 

Another line of research has been dedicated to repairable items. The basic reference in 

this area is the METRIC-method of Sherbrooke (1968). Models of the METRIC-class have 

initially been applied to various military systems in the air force, the navy and the army 

(Sherbrooke, 1992, Rustenburg, 2000). This model class is generally recognised to be useful 

for commercial applications as well, insofar repairable items are involved. Guide and 

Srivastava (1997) mention “the leasing of office equipment (e.g. reproducing equipment and 

computers), heavy equipment (e.g. tractors, earth moving equipment, industrial presses), and 

transportation equipment such as railroad, subway cars and buses.” Practical applications are 

described in various commercial settings, such as aircrafts (Tedone, 1989; de Haas and 

Verrijdt, 1997), a metro system (Diaz and Fu, 1997) and electronic testing equipment (Cohen 

et al., 1999). Further, combinations of repairable item inventory theory and simulation have 

been applied to the personal computer business (Ashayeri et al., 1996) and diesel locomotives 

(Kumar et al., 1994). Because the classical applications in the area are military systems, we 

will use cases derived from Rustenburg (2000) and Sherbrooke (1992) in this thesis. 

Most research effort has been spent to the optimisation of spare part inventories as 

discussed above, i.e. the allocation flexibility of the framework of Verrijdt (1997), see also 

section 1.1.2. As mentioned before, this flexibility option also includes the allocation of spare 

parts to stockpoints after repair, taking into account local shortages, see Miller (1974), Pyke 

(1990) and Büyükkurt and Parlar (1993). A related problem is to allocate spare parts to the 
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installed based, taking into account differences in equipment criticality (Dekker et al, 1998). 

Also, we find a similar problem setting in reverse logistics, see Fleischmann et al. (1997) and 

Inderfurth and Teunter (2001) for an overview. Inventory control is one of the main research 

areas within this field. Fleishmann et al. (1997) state that the key differences between reverse 

logistics and spare part management are (i) returned items are immediately replaced by new 

ones insofar possible, and (ii) a spare part system is essentially a closed-loop system. 

Similarities include the need to organise return flows, the need to disassemble equipment and 

the uncertainty in both failure cause and routing through the networks. As a consequence, 

logistic decisions are related, not only regarding inventory control. 

Next to allocation flexibility, the other flexibility options have received less attention in 

the literature. Pooling flexibility (lateral supply) has been studied amongst other by Lee 

(1987), Axsäter (1990) and Dada (1992) and more recently by Alfredsson and Verrijdt (1999) 

and Grahovac and Chakravarty (2001). A special type of pooling flexibility is cannibalisation 

(Fisher and Brennan, 1986; Sherbrooke, 1992). That is, a working part from a failed system 

in the installed base is used to replace a failed item of another system, so that at least one of 

the two systems can be available. Direct shipment flexibility  focusing on the trade-off 

between normal supply and emergency supply has been examined by Shibuya et al. (1998) 

and Alfredsson and Verrijdt (1999). All these issues relate to the supply subsystem. 

Regarding the repair subsystem, the literature dedicated to spare parts is limited. Partly, 

contributions can be found in reverse logistics literature as mentioned above, for example, the 

relation between the distribution and return network (return flow flexibility). Dedicated 

literature on work order release flexibility in spare part networks deals with using flexible 

repair shop capacity (de Haas, 1995; de Haas and Verrijdt, 1997) and batching policies (Chua 

et al, 1993). Within repair shop flexibility, we mention the option of emergency repair in case 

of shortages (Verrijdt et al,1998). Of course, standard operations scheduling literature applies 

to planning and scheduling of the repair facility as well, see e.g. Pinedo and Chao (1999).  

Most of the literature focuses on a steady state situation. Another approach is to plan 

spare parts over the life cycle of equipment. Examples of dynamic inventory in such a setting 

can be found in Cho et al. (1996), Klein Haneveld and Teunter (1997), Walker (1997) and 

Cho (2001). All this work relates to single-item problems, and the extension to multi-item (let 

alone multi-indenture problems) is still a challenge. Related to dynamic inventory problems 

is the yearly resupply of spare parts under a finite budget, see Rustenburg et al, 2000.  

Further, there is literature on the relation between maintenance optimisation and spare 

parts inventory control, see Kabir and Al-Olayan (1996a, 1996b), Sarker and Haque (2000). 
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For more literature on spare part management and related research issues, we refer to the 

reviews by Guide and Srivastava (1997), Verrijdt (1997), Rustenburg et al. (2001), and 

Kennedy et al. (2002).  

1.3.2 The METRIC class of models 

The METRIC approach (Sherbrooke, 1968, 1992) is concerned with setting the initial levels 

of repairable spare part inventories and their distribution among various locations in a 

distribution network. The goal is to maximise the average availability of a given installed 

base of technical systems that use the spare parts. Sherbrooke (1992) shows that maximising 

the average availability of the installed base is approximately equivalent to minimising the 

sum of the expected backorders of all highest indenture items at all downstream stock 

locations (i.e., the direct suppliers of spare parts to the installed base). METRIC is a greedy, 

iterative heuristic that increases the inventory level of a certain item at a certain location in 

each iteration. The selection criterion for item and location is the maximum backorder 

reduction per invested dollar. The original model by Sherbrooke (1968) is a multi-echelon, 

single-indenture model. This model is extended by Muckstadt (1973) to the multi-indenture 

case, which is known under the name MOD-METRIC. A key assumption in this model is that 

the so-called pipeline (i.e., the number of items in repair or in resupply) is Poisson 

distributed. This is not true for general multi-echelon, multi-indenture models. Therefore, 

Slay (1984) proposed to calculate the first two moments of the pipeline and to assume a 

negative binomial distribution with the same first two moments for the pipeline distribution. 

Because the variance is included, this variant is known as VARI-METRIC. Later, Sherbrooke 

combined MOD-METRIC and VARI-METRIC to a multi-echelon, multi-indenture spare 

parts supply model, which produces accurate results in comparison to simulation results (cf. 

Sherbrooke, 1986).  

One of the assumptions of the VARI-METRIC models is commonly known as the ample 

service assumption. It means that the repair capacity is infinite, i.e. there is no queue of items 

waiting for a repair channel. This has the effect that the replenishment lead times can be 

considered as statistically independent, and the mean and variance of the number of items 

under repair service are equal. As discussed in section 1.1.3, the infinite capacity assumption 

may not be applicable in practice. As a consequence, the independence of different lead times 

does not apply anymore. This influences performance calculations (backorders, availability) 

as well the optimisation procedure.  
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1.3.3 Spare part inventories and finite capacities 

In the literature, various ways to deal with finite capacity in service part networks have been 

discussed. One of these methods is to model the network as a closed queueing network 

(Jackson network, cf. Gross et al., 1978, 1983). This method provides very good estimations 

of the steady state probabilities in a closed network with fixed parameters, but the numerical 

algorithms involved make it difficult to find optimal stock levels for each location and each 

part type. Another approach is based on Markov processes; see Albright and Soni (1988), 

Gupta and Albright (1992) and Albright and Gupta (1993). A drawback of this approach is 

the fact that the number of states may become very large and that existing methods to reduce 

the model size to acceptable dimensions are rather rough.  

A similar approach is developed by Avsar and Zijm (2000). They construct an excellent 

approximation for a two-echelon inventory model, where repair shops can be modelled as 

open Jackson queueing networks. However, their model considers only item-dedicated repair 

shops and is difficult to extend to multi-echelon model or model with different types of repair 

shops, as we consider. 

Another possibility is to extend the VARI-METRIC method to deal with finite capacity 

by replacing the M/G/∞ queueing model for the repair shop by some finite capacity system, 

cf. Aboud (1996), Diaz and Fu (1997), Kim et al. (2000) and Perlman et al. (2001). They use 

their method to analyse the impact of finite capacity. Diaz and Fu (1997) show that finite 

capacity has a serious impact on system performance for a single indenture, two-echelon 

system with only one central repair shop. They model the repair shop as a GI/G/k multi-class 

queueing system, where the part flow of one item type is modelled as one class in the 

queueing system. Although they discuss formulas for multi-server queues, their numerical 

results refer to single server queues only. In addition, they discuss an alternative method to 

plug in throughput times as observed in practice in the M/G/∞ model, so that waiting times 

are included. This approach is also used in the case study for the Caracas Metro subway 

system that Diaz and Fu (1997) present. Then the impact of finite capacity is less, but still 

significant, and as we mentioned already this procedure is not suitable for what-if analyses. 

Although the approach by Diaz and Fu (1997) is simple and attractive, they restrict 

themselves to a very simple situation, namely a single repair shop consisting of one or more 

single server queues for a single-indenture, two-echelon system. It can be expected that the 

model complexity increases if the service part supply system contains multiple repair shops at 

various locations in the network and for various levels in a multi-indenture system, because 
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then the various queueing models interact which may cause a serious deterioration of 

numerical accuracy. Also, the model performance for multi-server repair shops has not been 

analysed.  

1.3.4 Spare part inventories and repair priorities 

When repair capacities are finite, an interesting question is how to use this capacity in an 

efficient way, particularly by sequencing or scheduling repair jobs. It has been noted in 

several publications that efficiency gain is possible using repair priorities, see e.g. Pyke 

(1990) and Verrijdt et al. (1998). Still, repair priority setting in spare part distribution 

networks has received only little attention in the literature. A possible cause is the lack of 

appropriate queueing models to analyse such repair shops until recently. Even, the analysis of 

spare part networks with finite capacity repair shops using simple First-Come-First-Serve 

(FCFS) rule is not straightforward, as is shown in Diaz and Fu (1997), Avsar and Zijm (2000) 

and Harten et al. (2000).  

Some insight has been gained using two approaches. In the first approach, repair 

priorities are modelled as a dual mode repair shop providing normal and emergency service, 

see Verrijdt et al. (1998) and their references. In their model, a spare part might receive a fast 

emergency repair if net inventory of these parts is lower then or equal to some level, but at 

higher costs. The model is restricted to a single-indenture, single-echelon case with ample 

repair capacity. A related model is discussed in Perlman et al. (2001), who assume that items 

arriving at repair shop i are sent to emergency repair with probability pi and to normal repair 

with probability 1 - pi. They consider a single-item, two-echelon model with finite capacity 

repair shops. They optimise the system with respect to pi. Because it is a single-item model, 

the impact of priority assignment to various items sharing the same repair capacity is not 

examined. Both Verrijdt et al. (1998) and Perlman et al. (2001) assume independent 

processing of normal and emergency items, which is not valid if both processes share the 

same repair capacity.  

A second approach is to use simulation modelling. Hausman and Scudder (1982) analyse 

the impact of static and dynamic priority rules for infinite capacity repair shops using 

simulation. Pyke (1990) uses simulation to examine the impact of finite capacities and repair 

priorities along with dispatch priorities. He studies a single repair facility in a three-echelon 

network with single-indenture items only. For repair priorities, he considers for each spare 

part the number of systems that are down because of the failure of that specific item. The 

item that is contributing to most systems is repaired first, so this is a dynamic (state-
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dependent) priority rule. Pyke (1990) shows that his priority rule leads to a drastic decrease in 

the number of non-available systems if repair shops are heavy loaded (utilisation = 0.96). The 

impact of the priority rule is only small if the utilisation is 0.6. Also, he finds that the average 

number of failed systems depends strongly on the repair shop utilisation under FCFS repair, 

whereas the impact is much smaller if proper priority rules are used.  

Next to these approaches to gain insight in the impact of repair priorities, other related 

research deals with the choice of dynamic priority rules in repair shops that are characterised 

by uncertain processing times, see e.g. Guide et al. (2000). Their main question is which 

priority scheduling policies minimise the average repair shop throughput time if no spares are 

allowed. Based on a simulation model, they find that the Shortest Processing Time (SPT) rule 

is usually dominant. However, they do not take into account differences in item costs. If item 

costs are very different, it is intuitively clear that this characteristic should be taken into 

account when setting priorities.  

1.3.5 Queueing models for repair shops 

From section 1.3.3, it is clear that we need queueing models for finite capacity repair shops. 

There is an extensive literature on queueing analysis, see e.g. Kleinrock (1975) and Gross et 

al. (1998). Applications are particularly in computer and telecommunication system analysis 

and the analysis of manufacturing systems, cf. Hall (1991), Papadopolous (1993) and 

Buzacott and Shanthikumar (1993). Before discussing the relevant literature, we have to 

discuss which kind of queueing models are relevant and which performance characteristics 

we need.  

Starting with the latter issue, we have seen in section 1.3.2 that VARI-METRIC requires 

for each item type the first two moments of the pipeline, being the number of items in repair 

and in resupply. Therefore, we need the first two moments of the number of items in the 

system for each item type. If multiple item types share the same repair capacity and their 

repair time distribution is different (as is plausible), this implies that we need a multi-class 

queueing model. Here each class represents one item type from the multi-indenture product 

structure with its own arrival rate and repair process. Because a repair shop can have one or 

more parallel repair men or work stations for a well-defined set of repair jobs, we conclude 

that we need multi-class, multi-server (MCMS) queues for the repair shops. When we wish to 

examine the impact of repair priorities, it even means that we have to take into account 

priority classes. Therefore, we focus in our literature review on (i) multi-class, multi-server 

queues and (ii) priority queues. We will discuss the available literature on these two topics 
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next. Thereby, we keep in mind that we need to evaluate the first two moments of the number 

of items in the system for each class as performance measures. Hence, results on only mean 

waiting time or mean queue length in MCMS (priority) queues are not sufficient for our 

purpose. 

Multi-class, multi-server queues 

The analysis of multi-class multi-server problems starts as a generalisation of the well-known 

M/M/k queue. In the more general MCMS context, the M/M/k queue can be considered as a 

special case where the classes of clients are indistinguishable with respect to their service 

characteristics. That is, the service rate of each class is equal to the average service rate. As a 

matter of fact, all classes can be considered to merge into one class only. The theory of the 

M/M/k queue is dealt with in any good textbook on operations research (e.g. Winston, 1997), 

or in many queueing book (e.g. Kleinrock, 1975 and Gross et al., 1998).  

One line of research on the MCMS queue is the application of approximation techniques 

or asymptotic methods. Bertsimas and Mourtzinou (1997) consider an approach to analyse 

the multi-class queueing systems with general arrival and service distributions in heavy 

traffic based on distributional and conservation laws. However, their results are restricted to 

single server systems. Diaz and Fu (1997), give some approximations mainly for the single 

server case. Basic to the reasoning underlying their approximations is that the expected 

waiting time is class-independent, see also Whitt (1993). Moreover, they assume the 

correlation between items in queue and in service is related in a simple way to the class 

utilisation fractions. As we will see in the remainder of this thesis, the exact solution of 

MCMS problems has a more complex structure. Other interesting work in this respect is 

Adan and van der Wal (1998). They relate mean lead time of a two-class system to those of a 

single class system with the Coxian-2 service process and show that systems where different 

items are processed by the same servers might perform better than the system with dedicated 

servers if the difference between service rates (µ1/µ2) is not too big (> 7).  

There are only few papers that are directly devoted to MCMS models, as far as we know 

(de Smit, 1983a, 1983b). De Smit (1983a) analyses the GI/M/k multi-class queue where 

different types of customers have different service rates and which is equivalent to  

the GI/Hm /k queue. Here GI refers to general arrival processes and Hm denotes a mixture of 

different exponential distributions, as one obtains in a multi-class model, if one abstracts 

from the identity of the different jobs and introduces one overall jobtype. His approach uses 

phase vectors and a solution is derived by Laplace transform and Wiener-Hopf 
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decomposition techniques. He obtains explicit results for the stationary distributions of 

waiting times and the queue length. It is shown that the stationary waiting time distribution is 

a mixture of exponentials, generalizing a previous result for M/Hm/2 of Cohen (1982). This 

result is theoretical, but de Smit (1983b) develops a numerical solution based on these results. 

However, the numerical solution procedure is limited to H2 service time distribution or 

equivalently two-class system with exponential service time distributions. For our purposes, 

we need systems with more item classes, particularly because we may need to evaluate 

multiple queueing models and variants when optimising spare part inventory levels under 

finite repair capacities.  

Multi-server queues with priorities 

In this thesis we consider only multi-class priority queue with fixed assignments of 

customers. A significant part of the literature deals with two priority classes. In our 

application, we may have more than two item types that share the same repair capacity. As a 

consequence, we either need a queueing model that can deal with an arbitrary number of 

priority classes (one for each item type), or a model with two priority classes that allows for 

subclasses within both high and low priority customers (items). We keep this in mind while 

discussing the related literature. 

There is quite some literature on single server priority queueing systems. However, 

multi-server priority queueing systems have received much less attention. Recently, such 

models have been studied by Mitrani et al. (1981), Gail et al. (1988, 1992), Kao et al. (1990, 

1999), Kella and Yechiali (1985), Wagner (1997a, 1997b, 1998). Results are available both if 

preemption is allowed, so high priority items may interrupt the service of low priority items, 

or not. 

The non-preemptive queues are analysed most extensively by Wagner (1997a, 1997b, 

1998), who considers multi-server, non-preemptive priority systems with Markovian arrival 

process, service times having phase type distributions and both finite or infinite queueing 

space. Another interesting approach to non-preemptive priority queues is proposed by Kao 

and Wilson (1999). They apply a power-series approach to solve the equilibrium equations 

and to estimate the main performance characteristics (mean, variance, etc.). The power-series 

approach has been introduced by Hooghiemstra et al. (1988) and has been applied before to 

solve a variety of queueing problems – particularly those with multidimensional state space. 

Kao and Wilson (1999) apply this approach to a multi-server queue with two priority classes 

and no preemption. They compare the performance of their method to a matrix analytic 
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approach as described in Kao and Narayanan (1998). The power series approach is 

interesting, because it can easily be implemented and it can be extended to include more than 

two priority classes and to preemptive priorities in theory. However these extensions cause an 

enormous growth of state space, and hence memory requirements and computation time. 

Among the papers on preemptive priorities, we mention the approximation approach of 

Buzen and Bondi (1983) and the generating function approach as proposed by Mitrani et al. 

(1981) and by Gail et al. (1982, 1992). The basic idea of the Buzen's approximation approach 

is to replace k servers by a single server that works k times as fast and to use a correction 

factor, being the ratio of the waiting times when the same trick would be applied to the non-

priority multi-server queue. Although this approach is attractive because of its simplicity and 

its extendability to general service times, it was done for the mean number of items in the 

system only. In contrast to Buzen's idea, the generating function approach gives exact results 

for the first two moments of the number of items in the system. However, these approaches 

(Gail et al., 1992, Mitrani et al., 1981) can only be applied to cases with two classes, each 

with one item-type.  

1.3.6 Our contributions 

Our contribution to the literature consists of  

1. The analysis of new queueing models, namely multi-class, multi-server queues. Because 

these models are complicated, we restrict ourselves to models with Poisson arrivals and 

exponential service times (the multi-class M/M/k model). We will both address non-

priority model (Chapter 3) and a model with preemptive priorities (Chapter 6). As a 

special case, we will discuss a new the multi-class M/M/k queue with outsourcing of high 

priority items that cannot be served immediately upon arrival. For this new model, we 

will discuss both preemptive and non-preemptive priorities (Chapter 7). 

2. An extension of VARI-METRIC with finite capacity repair shops. This model is new in 

the sense that such a general model with multiple item classes sharing the same repair 

capacity has not been analysed before in such detail (Chapter 4). It is also new in the 

sense that trade-off between extra stocks and extra capacities is considered (Chapter 5). 

3. An extension of VARI-METRIC with repair priorities. We do not just simply replace the 

multi-class M/M/k queue by the multi-class M/M/k priority queue, but we also address 

simultaneous priority assignment and inventory optimisation (Chapter 8). The latter is 

completely new, as no related models are available in the literature as far as we know. 
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In this thesis, we will show that significant gain in inventory investment is possible by proper 

priority assignment to items and/or by adequate investments in extra capacity.  

1.4 Outline of the thesis 

This thesis is structured as a set of self-contained papers that subsequently answer the 

research questions as posed in section 1.2.1. In each chapter, we will answer one research 

question. In Chapter 2, we discuss the (VARI-)METRIC model and we choose a queueing 

model for the repair shops. We analyse this queueing model in Chapter 3. Next, we extend 

METRIC to include finite capacity repair shops using our queueing analysis in Chapter 4. In 

the same chapter, we examine the impact of assuming infinite capacities whereas the actual 

repair capacities are finite. Also, we address the impact of repair shop utilisation on stock 

levels and distribution. Based on our finite capacity model, we can introduce a trade-off 

between inventories and repair capacities in METRIC. This is the subject of Chapter 5, in 

which we will also use our model to gain insight in the relation between the preferable repair 

shop utilisation rate on one hand and the costs of spare parts and repair capacity on the other 

hand. In Chapter 6, we extend our queueing model for the repair shop by introducing fixed 

priority classes. A variant of this model with outsourcing of high priority items if they cannot 

be served immediately upon arrival is discussed in Chapter 7. We extend METRIC with 

priority repair shops in Chapter 8 and we discuss simultaneous inventory optimisation and 

priority assignment. We use our extended model to gain insight in the extent to which repair 

priorities can be used to reduce the costs of spare parts provisioning. Finally, we summarise 

our conclusions and we discuss directions for follow-up research in Chapter 9.  

 



   

Chapter 2 

Inventory optimisation with infinite repair capacity:  

VARI-METRIC 

Abstract 

 

In this chapter we formulate the model of supply systems for repairable service parts with 

infinite repair capacity. We introduce the basic definitions and assumptions of our multi-

echelon, multi-indenture spare part models. We give an outline of VARI-METRIC, the 

standard method to optimise inventory levels of repairable items in such networks. This 

method will be the basis for our model extensions to finite capacity repair shops in the 

remainder of this thesis. Therefore, we discuss the requirements for a finite capacity repair 

shop model that can be embedded in the VARI-METRIC framework. Based on these 

requirements, we choose a repair shop model, thereby answering research question 1 as 

stated in Chapter 1. This model is a multi-class M/M/k queue, possibly with two fixed 

priority classes. 
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2.1 Introduction 

In this chapter, we describe Sherbrooke's (1992) model for general multi-item, multi-

indenture, multi-echelon inventory systems and the corresponding optimisation heuristic, 

VARI-METRIC. First, we introduce the key concepts and definitions (section 2.2). Next, we 

formulate the VARI-METRIC optimisation model and we discuss the assumptions and 

notation that we will use in the remainder of this thesis (section 2.3). In section 2.4, we 

describe the VARI-METRIC method for optimising repairable spare part inventory levels. 

Finally, in section 2.5 we discuss which repair shop model is appropriate to extend VARI-

METRIC with finite repair capacities, and which new queueing theoretic results we need.  

2.2 Concepts and definitions 

For better understanding, we first define the multi-echelon, multi-indenture systems and the 

flows of spare parts through such systems. Also, we address the definition of system 

availability. 

2.2.1 The multi-indenture hierarchy 

For maintenance and spare parts supply, the internal structure of a technical system consisting 

of modules and parts is relevant. In MRP-systems, this structure is described by a Bill of 

Material (BOM), see Figure 2.1 for an example. Such structures are used in spare part 

management as well. A technical system has one or more products, each consisting of 

modules and parts. The levels are usually referred to as indentures. Therefore, we deal with 

multi-product, multi-indenture systems. We number the indentures from the highest to the 

lowest level in the sub-assembly hierarchy, where level 1 represents the product level. With 

single-indenture systems, we refer to systems having several products without substructures. 

If at least one of the products consists of subassemblies, we have a multi-indenture system.  

Pump A

Valve Piston

Stem Ring Rod

Pump B

Flange Piston

Stem RodIndenture 3

Indenture 2

Indenture 1

 

Figure 2.1. The multi-indenture item hierarchy in Sherbrooke’s example 
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Further, we will use the following formal definitions: 

 

an assembly is an item that consists of lower level items in the system structure;  

a subassembly is an item that is a part of a higher level item in the system structure; 

a product is an assembly that is not a subassembly of any other item at the same time; 

an item or a part is general terminology for assemblies, subassemblies and products; 

the multiplicity of a subassembly is the number of identical items in a single assembly. 

 

In our example, the systems constituting the installed base are submarines. Each submarine 

has two products: pump A and pump B. Pump A consists of a valve and a piston. Similarly, 

pump B consists of a flange and a piston. The valve, flange and piston are assembled from a 

stem, ring and a rod as shown in Figure 2.1. In all cases, the multiplicity equals 1. Pump A, 

pump B, the valve, the piston and the flange are assemblies, whereas the stem, the ring, the 

rod, the valve and the piston are subassemblies.  

2.2.2 The multi-echelon hierarchy 

Because the installed base of technical systems is usually geographically dispersed, spare 

parts are stocked on various locations. Together, these locations form a network through 

which spare parts are distributed to the installed base. Items can be stocked at a central or at 

local locations (or a combination). This gives us a hierarchic, multi-echelon distribution 

structure. We introduce the following definitions: 

 

A location is a place that has either spare part stocks, or repair facilities for failed items, 

or both; 

An echelon is a set of locations at the same hierarchical level, where each location will 

have at most one supplier (location from higher echelon) and at least one customer 

(location from lower echelon, or the installed base for the lowest echelon); 

A downstream location is a location closer to the installed base than the current location 

in the sense of distribution flow; locations farther away are called upstream.  

 

We number the echelon levels from upstream to downstream in the geographical hierarchy, 

where level 1 represents the location most upstream. With single-echelon systems, we refer to 

systems having one or more locations that directly supply spare parts to the installed base 
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without mutual deliveries. If at least one of the locations receives regular resupply of spare 

parts from another location, we have a multi-echelon system.  

 Depot 

Supply ship Supply ship 

Submarine Submarine Submarine Submarine 

1st echelon 

2nd echelon 

3rd echelon 
 

Figure 2.2. The example of the supply system hierarchy 

In our example, we have three echelons: submarines, supply ships and the depot. The 

submarines are downstream locations for the supply ships and the depot is an upstream 

location for the supply ships.  

2.2.3 Spare part flows 

The item flows in multi-echelon, multi-indenture systems consist of the distribution of spare 

parts that are ready for use between stock locations and the installed base, and the return 

flows of failed items that should be repaired from the installed base to the repair shops. We 

will first describe how we model these item flows for simple single-site, single-indenture 

systems. Next, we extend the description stepwise to general multi-echelon, multi-indenture 

systems. Note that the description below coincides with the standard VARI-METRIC item 

flows, cf. Sherbrooke (1992). 

 

 

Stock 
orders

Spare parts 
(failed) 

Repair
Spare parts 
("as new") 

Spare parts ("as new") 

 

Figure 2.3. Single-site, single-indenture system (one location consisting of a stockpoint 

and a repairshop). 
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Figure 2.3 presents an example of a single-site, single-indenture system. The single site 

has a repair facility as well as a stockpoint. A sequence of events is triggered by the failure of 

a system in the installed base that is due to the failure of a specific product. That item arrives 

at the location and is directed to a repair facility. At the same time, the inventories are 

checked for a new item to replace the failed one. If such an item is available, it is issued 

immediately to replace the failed item. Assuming that the replacement time is negligible, 

there is no system down time. However, if the location is out of stock, the item is 

backordered and the system is temporarily down until a new item becomes available.  

The failed item enters the repair facility, where it possibly has to wait for repair capacity. 

After repair, the item is assumed to be as good as new. If repair appears to be not possible, 

the item is scrapped and a new item is ordered at an external supplier. As a consequence, the 

total number of spare parts circulating through the system is constant.  

When the item arrives at the stockpoint (either from the repair shop or from the external 

supplier), it is checked whether there are still backorders for that item. If so, the backorder 

waiting longest is filled (First-Come, First-Serve) and the corresponding system is switched 

into operation again. If there are no backorders, the item is added to stock. 

 

S t o c k
R e p a i r

o r d e r s

S p a r e  p a r t s

S t o c k
R e p a i r

o r d e r s

S p a r e  p a r t s

S t o c k
R e p a i r

o r d e r s

S p a r e  p a r t s

D e p o t

S u p p l y  s h i p   

S u p p l y  s h i p    

Figure 2.4. Two-echelon, one-indenture system 

 

Next, we extend this simple system to a multi-echelon structure, e.g. with supply ships as 

downstream echelon and a depot in the harbour as the upstream echelon. Upon diagnosis, the 
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failed item can follow two routes through the system, see Figure 2.4: either it enters the local 

repair facility, or it is forwarded to the next echelon upstream to be repaired there. Usually, 

items are sent to the higher echelon if local repair is technically impossible, i.e. if the local 

repair shop doesn’t have appropriate equipment or skills. If an item cannot be repaired at the 

most upstream location, it is sent to an external supplier for repair or replacement; we model 

the internal structure of the external supplier as a “black box” by throughput times only. 

If a new item is available at the local stockpoint, it is used to replace the failed item, 

otherwise the item is backordered. If the failed item has been forwarded upstream for repair, 

an order for a new item is issued to replenish the local stock. In this way, all local inventory 

positions (physical stock + in repair + on order - backorders) remain constant for all 

locations. If the upstream location does not have sufficient stock, the item is backordered on 

its turn until repair has been completed. When an item arrives at any location, either from the 

repair shop or from an upstream location as replenishment order, it can be used to fill a 

backorder.  

 

 

Stock 
Wait. room 

orders

Stock 
Repair 

orders 

Spare parts 

Lowest indenture repairshop and stockpoint 

Highest indenture repairshop and stockpoint  

DisAss. Assembl. 

 

Figure 2.5. One-echelon, two-indenture system 

 

If we extend the single-site, single-indenture system to a multi-indenture structure, we 

have product flows as shown in Figure 2.5. A failure of a product in the system is either 

caused by one of its subassemblies (so the replacement of this subassembly is sufficient for 

repair), or there is no specific subassembly causing the failure (hence the product has to be 

repaired). In the second case, the procedure is identical to the single-indenture model. In the 

first case, the repair procedure is as follows (see Figure 2.5): the item is disassembled and the 
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failed subassembly is sent to the repair facility. At the same time, the product is replaced by a 

new one if it is available on stock. If not, it is backordered. The disassembled product on its 

turn generates demand for a subassembly. If a new subassembly is available, the item is 

assembled and it is available to fill a backorder at product level.  
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Repair 

stock 
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Figure 2.6. The flow between repair shops and stockpoints 

 

If we combine both extensions to a general multi-echelon, multi-indenture system, we 

have flows between repair shops and stockpoints as shown in Figure 2.6. In general, failed 

parts arrive at a repair shop from the operational field, possibly via a downstream location 

where the item cannot be repaired. The failed product is replaced from the corresponding 

downstream stock location if available. At the location where the item is repaired, an item is 

requested to replenish the inventory at the downstream location. This is according to the 

multi-echelon procedure as described above. Next, we follow the multi-indenture procedure. 

That is, the cause of the failure is determined and the failed subassembly is sent to the repair 

facility or the item itself enters the repair process. The rest of the procedure is as described 

above.  

An important notion within VARI-METRIC is the so-called pipeline, being the number 

of items in process between the arrival of the failed item at a repair shop and the repair 

completion. To be precise, we define: 
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the pipeline of an item at a location m consists of all items in repair at location m, all 

items on order at the supplier of location m and all items waiting at location m for 

subassembly replacement 
  

2.2.4 Supply availability 

A key performance measure for spare part networks is the average availability of the installed 

base. Sherbrooke (1992) mentions several relevant definitions of availability, depending on 

the extent to which preventive maintenance is included. Because we are interested in the 

impact of spare part provisioning (via stock levels, repair capacities and repair priorities), the 

supply availability is a relevant performance measure. Similar to Sherbrooke (1992), this 

availability measure is defined as 

 

100%MTBMSupply availability
MTBM MSD

= ×
+

 

 

where MTBM denotes the mean time between maintenance and MSD the mean supply delay, 

i.e. the system downtime caused by unavailability of spare parts. We will simply refer to this 

definition as "availability" in the remainder of this thesis. For a further discussion on the 

relation between availability and the spare part stock levels, we refer to section 2.3.4. 

2.3 Model and assumptions 

In this section, we first address the optimisation problem qualitatively (2.3.1) and we state the 

key model assumptions (2.3.2). Also, we give an overview of the general notation that we 

will use throughout this thesis (2.3.3). Finally, we give a formal mathematical formulation of 

the optimisation problem (2.3.4). 

2.3.1 The optimisation problem 

Two key performance indicators involved in our problem are the average availability of the 

installed base and the costs for the initial purchase of spare parts. We aim to make a trade-off 

between these two factors. Therefore, we can formulate our problem using two combinations 

of goal function and restrictions, namely (i) maximise the average availability of the installed 

base under a budget restriction for the initial purchase of spare parts, and (ii) minimise the 

budget spent for the initial purchase of spare parts under a constraint of a target value for the 
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average availability. The VARI-METRIC method can deal with both variants, as the only 

difference is the stopping criterion of the algorithm, see section 2.4 for details. In practice, it 

is nice to show the (near-)optimal relation between average availability and budget in a graph 

as decision support for management.  

The decision variables in VARI-METRIC are the spare part inventory positions for each 

item at each location, i.e. the number of items on order plus the number of items in repair or 

resupply minus the number of backorders. Note that we will extend the set of decision 

variables in Chapter 5 when we make a trade-off between spare part inventories and repair 

capacities. In that case, the optimisation model should include the costs of repair capacity.  

Sherbrooke (1992) shows that, for infinite capacity repair shops, maximising the 

availability, the goal function of variant (i), is more or less equivalent to minimising the sum 

of the expected backorders of all highest indenture items at all most downstream locations. 

For the special case that every most downstream location serves exactly one system of the 

installed base, we can express the average system availability in the backorder probabilities 

rather than the expected backorders, see Rustenburg (2000). In any case, we must know the 

distribution of backorders at an operational level, or in other words the distribution of the 

highest indenture backorders at the most downstream echelon, to estimate the availability of 

the system.  

We point out that the relation between availability and backorders is more complicated in 

the case of finite capacity repair shops. We will return on this issue in Chapter 4.  

2.3.2 Assumptions 

VARI-METRIC uses the following assumptions (cf. Sherbrooke, 1992, Rustenburg, 2000): 

1. System failures occur according to a stationary Poisson process, so with constant failure 

rate. 

2. Each assembly failure is caused by at most one subassembly failure. 

3. Request for items are handled according to the First Come, First Serve (FCFS) rule at 

each stockpoint. 

4. Each stockpoint has exactly one supplier; there is no lateral supply from other 

stockpoints. 

5. Each stockpoint uses an (S-1, S) one-for-one inventory replenishment rule for each item. 
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6. The assignment of jobs to repair shops is only based on technical issues, such as the 

failure cause, the skills of the repair men and the availability of equipment; this is 

represented by a discrete probability distribution. 

7. The item repair times are independent, identically distributed random variables. 

8. The repair shops handle their jobs according to the FCFS discipline (i.e. no repair 

priorities). 

9. After repair, the items are as good as new. 

10. All item failures cause system failures, so all items are considered equally critical. 

 

Although one might question any of these assumptions, they are commonly accepted to 

make the analysis tractable. For a discussion on the validity of the assumptions, we refer to 

Rustenburg (2000), who makes a comparison with the situation at the Royal Netherlands 

Navy. On going research focuses on relaxing one or more of the basic assumptions, see 

Chapter 1. In this thesis, we will relax the assumptions 7 and 8.  

Assumption 7 refers to the independence of repair times if the repair capacities are 

infinite, so if the repair shops are modelled by M/G/∞ queues. In practise, one uses repair 

shop throughput times (including possible delay) as repair times. In this thesis, we explicitly 

model the repair capacity, so that we can distinguish net repair times and waiting time. We 

still assume that the net repair times are independent, but the repair shop throughput times of 

various items will be correlated because waiting times are interrelated. Additionally, we will 

assume that repair times are exponentially distributed to keep the analysis tractable.  

First, we shall also use Assumption 8 when developing models with finite repair 

capacity. In Chapter 8, when we examine the impact of repair priorities, we relax this 

assumption. 

2.3.3 Notation 

Below, we discuss the basic notation that we will use in the remainder of this thesis. 

Additional notation will be introduced when we use it. As reference, an overview is given in 

Appendix A. 
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Geographical structure 

m =  location index, 1, , locn N= … , where locN denotes the total number of locations 

in the system; 

n =  echelon index, 1, , echn N= … , where echN  denotes the total number of echelons 

in the system; here n = 1 (n = echN ) denotes the most upstream (downstream) 

level; 

ECH(n) =  set of locations corresponding to echelon n; 

CUS(m)  =  set of customers (locations from which replenishment orders are accepted) of 

location m; as the most downstream echelon supports the operational field, we 

say that ( )CUS m = ∅  if ( )echm ECH N∈ ; 

SUP(m)  =  the location that supplies items to location m (i.e. the direct supplier of location 

m); 

 

Product structure 

j =  item index, j = 1,..,Nitem, where Nitem denotes the total number of items in the 

system; 

i =  indenture index, i = 0,…,Nind ; here i=0 denotes the system level and i = Nind  

denotes the lowest subassembly level, i.e. the subassemblies that are not 

decomposed in smaller units; 

IND(i) =  set of items belonging to indenture i. 

SA(j) =  set of subassemblies of item j, where ( )SA j = ∅  for all ( )indj IND N∈ .  

AS(j) =  set of assemblies that have item j as a subassembly, where ( )AS j = ∅  for all 

( )1j IND∈ . 

Zj =  the multiplicity of product j (i.e. the number of class j items in a single system in 

the installed base) 

 

Routing characteristics 
rep
mjp  =  probability that item j can be repaired at location m; the item is dispatched to the 

next higher level in the multi-echelon structure with probability (1 - rep
mjp );  
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cause
mjkp  =  probability that a failure of item j at location m is caused by a failure of 

subassembly k (k∈SA(j)); item j should be repaired itself at location m with 

probability 
( )

1 cause
mjk

k SA j

p
∈

− ∑ ; 

 

Item data  

Bm =  the size of the installed base at location m 

mjst  =  stock level of item j at location m, i.e. the number of items on hand plus the 

number in the pipeline minus the backorders; st denotes the matrix of all stock 

levels in the system. 

jc  =  price of item j. 

 

Repair and transport characteristics 

mjλ  =  demand rate for item j at location m  

mjSTm  =  repair time, a random variable with mean E[ mjSTm ] and coefficient of 

variation S mjC , where the coefficient of variation is defined as the ratio between 

the standard deviation and the mean 

mjO  =  order-and-ship time of item j to location m from its supplier, a random variable 

with mean E[ mjO ] and coefficient of variation OmjC ; for m∈ECH(1), these 

variables represent the external procurement / repair time. 

 

System state  

mjQ  =  number of type j items in the repair queue at location m. 

mjR  =  number of type j under repair (in queue and in service) at location m. 

mjPL  =  number of type j items in the pipeline at location m, i.e. all items j under repair at 

location m, all items j on order at the supplier of location m and all items j waiting 

at location m for subassembly replacement.  

( )mjBO st =  number of backorders for item j at location m as a function of the stock levels st ; 

( ) ( )max ,0mj mj mjBO st PL st= −  
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2.3.4 Mathematical formulation 

To formulate the optimisation problem, we have to express the average availability in the 

decision variables, being the inventory positions st . For the supply availability, we have that 

a system is available if all products (highest indenture items) are available. Sherbrooke 

(1992) shows that maximising this availability function is approximately equivalent to 

minimising the sum of the expected backorders for single site systems and if the repair shops 

have infinite capacity. We will now give an outline of the derivation of availability in terms 

of expected backorders for general multi-echelon systems. 

Suppose that at a certain point in time the number of backorders for product (1)j IND∈  at 

a most downstream location ( )echm ECH N∈  equals ( )mjBO st . Noting that m jB Z  products 

need to be operational for the installed base at location m to be fully available, we find that a 

single system in the installed base at location m is waiting for product j with approximate 

probability ( ) ( )mj m jBO st B Z , provided that the numerator is much smaller than the 

denominator. Now let us assume that a system is only available if all products are available, 

so it is a serial system in reliability terminology. Then, given the specific state as described 

by the number of backorders, we find that the system is available (i.e., not waiting for any 

product) with probability  

 

( ) ( ) ( ){ }
(1)

1
jZ

m mj m j
j IND

A s BO st B Z
∈

= −∏  (2.1) 

 

By taking the expectation of (2.1), we get the average availability of all systems at 

downstream location m. We find the average availability of the entire installed base by 

averaging over all most downstream locations and by taking the expectation: 

 

( )
( )

( )

( )

Ech

ech

m m
m ECH N

m
m ECH N

B A st
A st E

B
∈

∈

 
 

=  
 
  

∑

∑
  (2.2) 
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To arrive at the same result as Sherbrooke (1992), we use a modification of Rustenburg's 

(2000) derivation1. Using the shorthand notation 
( )ech

m
m ECH N

B B
∈

= ∑ , we can write (2.2) as 

 

( )

1 (1 )
ech

m m
m ECH N

A E B B A
B ∈

 
= − − 

  
∑  

 

Noting that ln(1 )x x− ≈ −  for x small and that the target value for 1 - Am is generally small, we 

can rewrite this equation as  

 

( ) ( )
( )

11 ln
ech

m m
m ECH N

A st B E A st
B ∈

 ≈ +  ∑  (2.3) 

 

From equation (2.1), we find that  

 

( ) ( )
(1)

ln( ) ln 1m j mj m j
j IND

A Z BO st B Z
∈

 = − ∑   

 

Applying again that ln(1 )x x− ≈ −  for x small, we have 

 

( ) ( )
(1)

ln m mj m
j IND

A st BO st B
∈

  ≈ −  ∑   (2.4) 

 

Combining (2.3) and (2.4) gives 

 

( ) ( )
(1)( )

11
ech

mj
j INDm ECH N

A st E BO st
B ∈∈

 ≈ −  ∑ ∑   (2.5) 

 

So, we find that maximising the average system availability is approximately equivalent to 

minimising the sum of the expected backorders of all highest indenture assemblies at all most 

downstream locations. Therefore, we can take the following goal function: 

 

                                                 
1 See Section 3.4 of his thesis 
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( )
(1)( )

min
ech

mjst j INDm ECH N

E BO st
∈∈

 
 ∑ ∑   (2.6) 

 

Another availability function was introduced by Rustenburg (2000) in a NAVY case. In this 

application, the most downstream locations are frigates and the failure of any unit implies 

that the frigate is not available. In fact, the size of the installed base at each most downstream 

location is exactly one (Bm = 1). For this case the availability function can be defined as: 

 

( ){ }
(1)( )

1 1 P
| ( ) | ech

mjech
j INDm ECH N

A BO st
ECH N ∈∈

 = −  ∑ ∏  (2.7) 

 

where |ECH(N)| denotes the number of elements in the set ECH(N) and where we use the 

shorthand notation ( ) ( )( )0mj mjPBO st P BO st= >  for convenience. Rustenburg (2000) shows 

that maximising this availability function is approximately equivalent with minimising the 

sum of the backorder probabilities. So an alternative goal function is 

 

( )
(1)( )

min
ech

mjst j INDm ECH N

P BO st
∈∈

 
 ∑ ∑   (2.8) 

 

Now we can state the formal optimisation problems: 

 

Variant (i), maximise the average availability subject to a budget constraint: 

( )
(1)( )

(1) ( )

min  

subject to

ech

ech

mjst j INDm ECH N

j mj
j IND m ECH N

mj

E BO st

c st BUDGET

st

∈∈

∈ ∈

 
 

≤

∈

∑ ∑

∑ ∑
N

 (2.9) 

 

where as a sub-variant (i)', we can replace the goal function by (2.8) for Rustenburg's (2000) 

model. 
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Variant (ii), minimise inventory investment subject to a constraint on the average 

availability: 

( )

(1) ( )

(1)( )

min

subject to

(1 ) 

ech

ech

j mjst j IND m ECH N

mj Target
j INDm ECH N

mj

c st

E BO st B A

st

∈ ∈

∈∈

  ≤ − 

∈

∑ ∑

∑ ∑
N

 (2.10) 

 

where as a sub-variant (ii)', we can modify the constraint using (2.7) for Rustenburg's (2000) 

model. 

 

Of course, the expected backorders is a non-linear function of the stock levels st . 

Therefore, we have a large non-linear integer optimisation problem for both variants. An 

exact solution procedure that is practical for large instances is not known. VARI-METRIC is 

a greedy optimisation heuristic to both variant (i) and variant (ii) and the corresponding sub-

variants. The methodology that we will develop in this thesis is also suitable for both model 

variants and for both Sherbrooke’s and Rustenburg’s formulation. In the numerical examples 

that we will discuss, we will choose variant (ii)'. 

2.4 The VARI-METRIC optimisation heuristic 

The (VARI-)METRIC method analyses the relevant backorder distributions by subsequently 

deriving the pipeline and backorder distributions of various items and various locations, 

starting with the lowest indenture items at the most upstream location in the echelon 

structure. To facilitate this, the arrival rates of all items (assemblies and subassemblies) at all 

repair shops in the network have to be calculated. Below, we give an outline of the basic 

mathematics of VARI-METRIC. 

2.4.1 Calculating the item arrival rates 

The arrival rate λmj of item j at location m consists of two parts: 

• the arrival rates of this item at downstream locations l (λl) multiplied by the probability 

that these items cannot be repaired at these down stream locations (1 rep
mkp− ) 
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• the arrival rates of higher indenture items (i.e. assembly k has item j as subassembly) at 

location m (λmk) multiplied by the probability that item k can be repaired at location m 

( rep
mkp ) and multiplied by the probability that item j is the cause of the failure ( cause

mkjp )  

Hence, we arrive at the expression 

 

( )
( ) ( )

1 rep rep cause
mj lj lj mk mk mkj

l CUS m k AS j
p p pλ λ λ

∈ ∈

= − +∑ ∑  (2.11) 

 

All arrival rates can be computed recursively, starting with the failure rates of the installed 

base, i.e. the highest indenture items (j∈IND(1)) at the most downstream locations 

(m∈ECH(Nech)) and next moving to lower indenture and more upstream levels, see Figure 

2.7. 

λmj

Indentures

Echelons

Highest indenture 
j ∈ AS(k)

Lowest indenture
k∈SA(j)

Upstream 
m=SUP(l)

Downstream 
l ∈ CUS(m)

λlj

λlkλmk

1 rep
ljp−

rep cause
mk mkjp p

1 rep
lkp−

rep cause
lk lkjp p

λmj

Indentures

Echelons

Highest indenture 
j ∈ AS(k)

Lowest indenture
k∈SA(j)

Upstream 
m=SUP(l)

Downstream 
l ∈ CUS(m)

λlj

λlkλmk

1 rep
ljp−

rep cause
mk mkjp p

1 rep
lkp−

rep cause
lk lkjp p

 

Figure 2.7. Calculation sequence of the item arrival rates; the grey box is the starting 

point 

2.4.2 Calculating pipeline and backorder characteristics 

Consider a subsystem with one repair facility and an inventory function at location m. The 

number of backorders of item j in such a subsystem is the non-negative difference between 

number of items in pipeline PLmj and the number of items in stock stmj : 

 

{ }max ,0mj mj mjBO PL st= −   (2.12) 
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Recall that the pipeline refers to all items in repair at location m, all items on order at the 

supplier of location m and all items waiting at location m for subassembly replacement. 

Hence, the pipeline distribution depends on the backorders upstream in the echelon structure 

and downwards in the indenture structure. We can derive an expression for the pipeline PLmj 

by considering the three components separately: 

• All items j in repair at location m. If the repair shop has infinite capacity, the mean 

number of items under repair is given [ ] [ ]rep rep
mj mj mj mj mjp E R p E STmλ= . 

• All items j waiting at location m for subassembly replacement. The total number of items 

waiting for replacement of subassembly ( )k SA j∈  equals the number of backorders 

BOmk. Only a fraction hmjk of the backorders for item k at location m is due to a request 

from item j. A reasonable approximation for this fraction is the effective demand rate for 

subassembly k arising from item j as fraction of the total demand rate for item k at 

location m: /rep cause
mjk mk mj mkj mkh p pλ λ= . So for this part of the pipeline, we arrive at the mean 

value 
( )

[ ]mjk mk
k SA j

h E BO
∈
∑ .  

• All items j on order at the supplier of location m. These items include the items being 

transported to location j from its supplier ( (1 ) [ ]rep
mj mj mjp E Oλ − ) and the items waiting at the 

supplier ( )n SUP m=  for replacement. The items waiting for replacement can be derived 

from the number of backorders for item j at the supplier n, BOnj. Only a fraction fmj of 

these backorders are destined for location m. This fraction can be calculated as the ratio 

between the demand for item j by location m and the total demand for item j at the 

supplier n: ( ),(1 ) /rep
mj mj mj SUP m jf p λ λ= − . So for this part of the pipeline, we arrive at the 

mean value ( ),(1 ) [ ] [ ]rep
mj mj mj mj SUP m jp E O f E BOλ − + .  

 

Putting it all together, we find the following expression: 

 

( ),
( )

[ ] [ ] [ ] (1 ) [ ] [ ]rep rep
mj mj mj mj mjk mk mj mj mj mj SUP m j

k SA j

E P p E STm h E BO p E O f E BOλ λ
∈

= + + − +∑ (2.13) 

 

Similarly, an expression for the variance of the backorders can be derived as well. Then 

we arrive at (cf. Sherbrooke, 1992, Rustenburg, 2000): 
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{ }2

( )

2
( ), ( ),

[ ] [ ] (1 ) [ ] [ ]

                (1 ) [ ] (1 ) [ ] [ ]

rep
mj mj mk mj mjk mjk mk mjk mk

k SA j

rep
mj mk mj mj mj SUP m j mj SUP m j

Var P p E STm h h E BO h Var BO

p E O f f E BO f Var BO

λ

λ
∈

= + − +

+ − + − +

∑
 (2.14) 

 

Equation (2.12) shows that the backorder characteristics can be calculated from the 

pipeline characteristics, whereas equation (2.13) and (2.14) show that the pipeline 

characteristics can be calculated from the backorder characteristics. This provides a way to 

obtain all backorder characteristics recursively, starting with the pipeline of the lowest 

indenture items (k∈IND(Nind)) at the most upstream location (l∈ECH(1)) and next moving to 

higher indenture and more down levels, see Figure 2.8. Hence the direction of pipeline and 

backorder calculations is reversed compared to the calculation of the item rates. 
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Figure 2.8. Calculation sequence of the backorders; the grey box is the starting point 

 

As a simple approximation to obtain the backorder characteristics from (2.12), we only 

use the first two moments of the numbers of items in the pipeline and we fit a discrete 

distribution on the first two moments. The most general way to achieve this is given by Adan 

et al. (1996). Based on this approximate distribution for the pipeline, we can find the first two 

moments of the backorders. So, we use the following equations 

 

( )
( )

1

2

[ ] [ ], [ ]

[ ] [ ], [ ]

mj mj mj

mj mj mj

E BO F E PL Var PL

Var BO F E PL Var PL

=

=
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where the functions F1 and F2 are some specific functions whose structure depend on the 

mean and variance of the pipeline, see Adan et al. (1996) for details. When we have the mean 

and variance of the backorders, we can use the values for the mean backorders to calculate 

the mean pipeline for higher indenture items and for more downstream locations from (2.13) 

and (2.14) as shown in Figure 2.8. For the availability calculations, we need the backorders of 

all highest indenture items j∈IND(1) at all most downstream locations m∈ECH(Nech), see 

(2.5). 

2.4.3 The VARI-METRIC algorithm 

Based on the equations for the item arrival rates and the backorder characteristics, the VARI-

METRIC algorithm uses a greedy rule to optimise item stock levels within a budget 

constraint. The idea is very simple: the system availability is related to the sum of the mean 

backorders of all highest indenture items ( ( )1i IND∈ ) at all most downstream locations 

( ( )echm ECH N∈ ), see equation (2.5). Hence, a greedy rule adds an item i* to stock at 

location n* in each step ( * *i n
st e+ , where ein is a matrix with all elements equal to zero, except 

for element i, n which is equal to 1), such that the reduction in the total expected backorders 

per invested dollar is maximised. For Rustenburg’s formulation, the equivalent rule is the 

maximisation of the reduction in the sum of the backorder probabilities. Stating the rule for 

Rustenburg’s variant, the rule is to select (j*, m*) such, that the expression:  

 

( ) ( )* *

* *

*

(1) (1)( ) ( )ech ech
mj mj j m

j IDN j IDNm ECH N m ECH Nstock
itemi m
j

PBO st PBO st e

c
∈ ∈∈ ∈

− +
∆ =

∑ ∑ ∑ ∑
 (2.15) 

 

is maximised. Here we use as before the shorthand notation ( ) ( )( )0mj mjPBO st P BO st= > . 

For Sherbrooke’s formulation, we should simply replace the backorder probabilities by the 

expected backorders. Rustenburg (2000) shows that this greedy rule yields good results for 

two-echelon, two-indenture models, provided that the following nonnegative starting values 

are chosen for the stock levels: 

 

( )
( )

1
2: [ ] (1 ) [ ]    , (1)

: [ ] (1 ) [ ]    otherwise

rep rep
jm jm mj jm mj jm

rep rep
jm jm mj jm mj jm

st round p E STm p E O j m ECH

st round p E STm p E O

λ

λ

 = + − ∀ ∈ 
 = + − 

 (2.16) 
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Summarised, the VARI-METRIC method works as follows: 

 

VARI-METRIC: inventory optimisation for variant (i), formulation Rustenburg 
 
Step 1. Initialise the stocks levels according to (2.16). Set the budget spent Ĉ equal to total 

costs of the initial stock levels: ˆ
mj mj

j m
C c st= ∑∑ ; 

Step 2. Calculate the demand rates of all items at all locations according to (2.11); 

Step 3. Recursively calculate the first two moments of the pipeline and the backorders from 

(2.12) - (2.14); 

Step 4. Calculate stock
mj∆ for all combinations of item and location according to (2.15) and 

determine the maximum of all the increments stock
mj∆ ; say that this maximum is 

obtained for item j* at location m*; 

Step 5. * * * * *
ˆ ˆ: 1;   :  stock

j m j m j
st st C C c= + = +   

Step 6. If ˆ budgetC < , then go to Step 3, else STOP 

 

In a similar way, we can define an algorithm for variant (ii): minimise the budget for 

parts and repair capacity given a target availability. Then, we should only modify the stop 

criterion in step 6. Instead of the budget restriction, we use a restriction on the average system 

availability: 

 

( ) ( )( )
(1)( )

1 0
( ) ech

mj Target
j INDm ECH N

A st P BO st A
ECH N ∈∈

= > ≥∑ ∏  

 

2.5 The repair shop model 

2.5.1 The queueing model 

It is natural to model repair facilities as queues, where we analyse each repair shop 

independently. However, even modelling a single repair facility is not an easy task, because 
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their operations are complex in practice. A variety of issues is relevant, such as the 

availability of multiple resources (machines, personnel, tools), flexibility of capacity 

(outsourcing, overtime), planning (preventive maintenance), job priorities, job routing, etc. A 

detailed model leads to an optimisation problem that is very hard to solve. Besides, we are 

interested in the impact of finite capacities and repair priorities on tactical decisions as initial 

inventory investment and repair capacities. Therefore, we choose for a less detailed model 

capturing the main issues from finite repair capacity. From the preceding, we derive the 

following minimum requirements for our model: 

1. the repair facility at a certain location can either be a generic facility that can handle all 

job types, or it consists of a set of dedicated repair shops; a dedicated repair shop is able 

to handle a subset of all repair jobs that arrive at a certain location; 

2. each repair shop can have a single or several parallel channels to handle the jobs; 

3. it should be possible to include repair priorities;  

4. it should be possible to derive (good approximations for) the first two moments of the 

number of items in the repair shop; we need these characteristics to apply VARI-

METRIC. 

 

Above, we distinguished between repair shops and repair facilities. For clarity, we give the 

following definitions: 

 

a repair shop is a resource to handle a subset of repair jobs with either one channel 

or multiple identical parallel channels; 

a repair facility is the set of all repair shops at a certain location; the repair shops 

belonging to a single repair facility may be different;  

 

The first three requirements lead us to multi-class, multi-server models with priorities. 

As we have seen in section 1.3.5, there are no analytic results for these models readily 

available in the literature. Moreover, it is not sufficient to derive (approximations for) 

standard performance characteristics as the mean waiting time and the mean queue length. 

Therefore, we are confronted with a complex queueing analysis task. To be able to derive the 

performance estimators needed, we choose to model repair times by exponential 

distributions. Although this is not a general model (we cannot choose the repair time 
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variance), it can provide us with a good indication of the impact of finite repair capacities and 

repair priorities. Therefore, we choose to model repair shops by multi-class M/M/k queues, in 

a later stage to be extended with priorities.  

Although our repair shop model provides us with quite some flexibility, we are aware 

that we ignore some relevant aspects for the tactical decisions. Particularly, we mention 

preventive maintenance done by the repair men from the repair shops (these jobs can be 

planned to some extent) and flexibility of repair capacity (overtime, outsourcing). Although 

these aspects can have a significant impact on the results, we choose to leave many of these 

issues for further research. Only outsourcing will be considered up to a certain degree in 

Chapter 7. We simply have to be realistic that not all issues can be solved at once. 

2.5.2 Job classes 

The former discussion leaves us with the question how to define job classes. For simplicity, 

we choose item types for the class structure. Of course, it is possible that repair shops are 

dedicated to specific job types that do not coincide with the item classification. This has 

impact on the item arrival rates at the repair shops and on the pipeline calculation. In 

principle, we can model this by introducing a (discrete) probability distribution for the 

assignment of a specific item type to a specific repair shop at a fixed location. To this end, we 

introduce the following definitions: 

 

h =  repair shop index, 1, , shoph N= … , where shopN  denotes the total number of repair 

shops in the system; 

SH(m) =  set of repair shops at location m; 
shop
mjhp  =  probability that item j will be repaired by repair shop h, given that it will be 

repaired at location m; 

mjhλ  =  arrival rate of item j at repair shop h at location m. 

 

Now we can modify the arrival rate calculation (2.11) simply using the discrete 

probability distribution over all repair shops at location m: 

 

( )
( ) ( )

1shop rep shop rep cause
mjh mjh lj lj mjh mk mk mkj

l CUS m k AS j
p p p p pλ λ λ

∈ ∈

= − +∑ ∑  

 



2.5 The repair shop model  53 

Further, we can modify the pipeline calculation as follows (compare section 2.4.2). 

Distinguishing between various repair shops ( )h SH m∈  at location m, we redefine Rhj as the 

number of items of type j in repair shop h (in repair or waiting for repair). Then, the mean 

number of items of type j in repair at location m equals 
( )

[ ]rep shop
mj mjh hj

h SH m

p p E R
∈
∑ . Replacing this 

first component in equation (2.13) is sufficient to model a more generic job class structure. A 

similar modification can be done in a straightforward way for the variance of the number of 

items in the pipeline (2.14). Although it is no problem to define job classes in a more general 

way, we will use item types as job classes in the remainder of this thesis for the sake of 

simplicity of presentation.  

2.5.3 Job priorities 

Regarding job priorities, it is logical to assign priorities to item types. The main reason is our 

focus on the tactical decision on initial inventory levels. If we wish to influence these 

inventory levels using priorities, it is reasonable to assign these priorities to items based on 

item characteristics only, such as the price, the failure rate and the repair time. In principle, 

we can assign a separate priority to each item then. For simplicity of the analysis, we choose 

for two priority classes only in this thesis. This means that items should be given either high 

or low priority.  

The priority assignment may vary between repair shops, so an item may have high 

priority in one repair shop and low priority in the other one. Although this solution does not 

seem to be logical at first sight, we leave this open. After all, the situation at central and local 

level may be entirely different in terms of assignment of items to repair shops (dedicated or 

generic repair shops), repair times, item arrival rates and repair capacities.  

Given job priorities, we still need to decide upon the queueing discipline. That is, how is 

a high priority job handled that finds all servers occupied upon arrival, some of them with 

low priority jobs? The common choices are: 

1. the high priority job waits until the next server comes available; this is the non-

preemptive discipline; 

2. if any low priority job is in service, the high priority job is taken into service immediately, 

thereby postponing the low priority job; this is the preemptive discipline; for this option, 

we have to make an assumption on the continuation of the low priority job: 
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a. preemptive resume: when capacity is available for the postponed low priority job, it is 

taken into service, and the new service time equals the remaining service time when 

the job was interrupted; 

b. preemptive restart: the new service time equals the complete repair time, so we 

assume that the repair man has to start the job all over again. 

 

Because repair jobs may have long throughput times and to strengthen the difference 

between low and high priority jobs, we choose for preemptive priorities. A more practical 

reason is that this queueing model variant is easier to analyse, as we will show in Chapter 6. 

Because we assume exponential repair times, the preemptive resume and preemptive restart 

variants are identical from a mathematical point of view. 

2.5.4 Overview of assumptions 

Summarising, we will use the following assumptions for our finite capacity repair shops, 

additionally to the VARI-METRIC assumptions (section 2.3.2),  

1. at every location, there is at most one repair facility, consisting of one or more repair 

shops; each repair shop is dedicated to a subset of items; 

2. at each location, there is at most one repair shop where a certain item type can be 

repaired; 

3. the repair capacity is constant; 

4. repair times are independent and exponentially distributed random variables; 

5. priorities, if any, are assigned as either high or low priority, so we have two priority 

classes only; priorities are assigned to items for each repair shop separately; 

6. in case of priorities, the queueing discipline is preemptive resume. 

 

With respect to the last assumption, note that we will consider non-preemptive priorities as 

well in Chapter 7. 

2.6 Summary 

In this chapter we have introduced the spare parts supply model used in this thesis along with 

the main definitions and notations. We gave an outline of VARI-METRIC and discussed the 

repair shop model to be used in the remainder of this thesis. We choose to model the spare 

part network with finite repair capacities as a network with one or more repair shops per 

location. We model every repair shop as a multi-class M/M/k queue. In the case of repair 
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priorities, we use two priority classes with a fixed assignment of items to priority classes per 

repair shop and a preemptive resume queueing discipline. Herewith, we answered research 

question 1 from the introduction. 

 

 

 





   

Chapter 3 

Multi-Class M/M/k queue 

Abstract 

 

Multi-class multi-server queueing problems are a generalisation of the well-known M/M/k 

situation to arrival processes with clients of N types that require exponentially distributed 

service with different average service times. Problems of this sort arise naturally in various 

applications, such as spare parts management, for example. In this chapter, we give a 

procedure to construct exact solutions of the stationary state equations. Essential in this 

procedure is the reduction of the problem for n (= the number of clients in the system) > k to 

a backwards second order difference equation with constant coefficients for a vector in a 

linear space with dimension depending on N and k, denoted by d(N, k). Precisely d(N, k) of 

its solutions have exponential decay for n → ∞. Next, using this as input, the equations for n 

≤ k can be solved by backwards recursion. It follows that the exact solution does not have a 

simple product structure as one might expect intuitively. Further, using the exact solution, 

several interesting performance measures related to spare parts management can be 

computed and compared with heuristic approximations. This is illustrated with numerical 

results. The algorithm as developed in this chapter is the answer on our second research 

question as stated in Chapter 1. 
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This chapter is based on the paper: 

“On multi-class multi-server queueing and spare parts management.” A. van Harten, A. 

Sleptchenko, BETA publication (WP-49), 2000. Submitted for publication. 
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3.1 Introduction 

Multi-class, multi-server (MCMS) models arise for stochastic processes where clients with 

different service characteristics ask for service capacity from a non-differentiated resource 

with finite capacity. Such a resource can be a spare parts repair shop as described in the 

previous chapter. The main questions that we will address here are:  

1. How do we construct exact/approximate solutions for such models? 

2. How do we use these solutions for improved design and management of spare part 

systems? 

The analysis of multi-class multi-server problems starts as a generalisation of the well-

known M/M/k queue. The theory of the M/M/k queue is dealt with in any good textbook on 

operations research, such as Winston (1997). In the more general MCMS context, the M/M/k 

queue can be considered as a special case where the classes of clients are indistinguishable 

with respect to their service characteristics. Then, the service rate µi of class i is equal to the 

average service rate µ. As a matter of fact, all classes can be considered to merge into one 

class only. In the general case with N > 1 classes, µi has a different value for each class and 

( )1i iµ µ δ= +  where δi measures the strength of the perturbation relative to the average 

service rate µ.  

Compared with previous work on multi-class multi-server queues (Cohen, 1982, de Smit, 

1983a, 1983b), our queueing discipline is different and our approach is more straightforward, 

since the stationary state equations in our multi-class problem are solved explicitly. This 

provides us with more detailed information on class-dependent performance measures. Such 

information is necessary in spare parts management applications. In our work, there is a first-

come-first-serve (FCFS) service discipline for jobs from different classes of clients. In spare 

parts management, this is consistent with the usual way of thinking.  

The remainder of this chapter is structured as follows. First, we give an outline of our 

approach in section 3.2. Next, we discuss the steady state equations (section 3.3). Then, we 

solve these equations explicitly for the special cases of equal service rates (section 3.4). We 

discuss the solution of the general model in section 3.5. There, we provide both an exact and 

an approximate solution. In section 3.6, we derive relevant performance measures based on 

the steady state probabilities. Numerical results are discussed in section 3.7. Finally, we give 

our conclusions in section 3.8. 
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3.2 Approach 

Let us now briefly sketch our approach. Here we focus on the stationary probability 

distribution over the states of a general MCMS system. The state definition has to take into 

account the types of jobs in execution and in the queue. The state equations can be given 

explicitly in the general case, see section 3.3. For unperturbed case, when service times of 

jobs are equal, an analytical solution can be found, see section 3.4. Only a few structural 

aspects of this solution survive the perturbation of service times. It is crucial that in the 

general case, the distribution over the ordering in the queue keeps a product structure based 

on the arrival fractions of the client classes. Using this structure for n (= the number of clients 

in the system) > k, we obtain a much more transparent structure for the state equations. For 

n k> , they reduce to a backwards second order difference equation for a vector in a linear 

space of dimension ( ) ( )
( )

1 !
! 1 !, N k

k Nd N k + −
−= . For example, for 3N =  and 4k =  we find 

( ), 15d N k = . Of course, this dimension increases rapidly with N and k. Now the difference 

equations can be solved in terms of eigenvalues and (generalised) eigenvectors of the 

iteration matrix. All eigenvalues and eigenvectors can be determined explicitly if the service 

times of jobs are equal. Precisely ( ),d N k  of the eigenvalues are real and > 1 in the 

unperturbed case, which corresponds with decay for n → ∞ . This property survives the 

perturbation of the service times. It is the clue to solve the state equations, first for n k>  with 

the start vector for n k=  as an unknown and next, again with backwards recursion, also for 

n k< , until only one scaling constant, the probability of the empty state, remains. That 

scaling constant follows from the fact that the state probabilities sum to 1. 

Using this procedure, the exact solution follows, see section 3.5, and its structure can be 

analysed. Next, coming back to the second question in the beginning, all sorts of interesting 

performance criteria for MCMS systems can be determined exactly, see section 3.6. 

Examples of such performance indicators are the expected number of items of type i in the 

system or in queue, its variance, the expected number of backorders of type i, its variance, the 

expected waiting time for clients in a certain class. Their behaviour is discussed in section 

3.7. 

To conclude this introduction, we summarise the main relevance of these results for 

MCMS queues for process design and - management questions: 

− More accurate insight in the performance differences between different classes of clients 
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− Better insight in the relation between capacity and performance when several classes of 

clients compete for capacity, hence correlation between classes occurs. 

In spare parts management, both issues play an important role. Potential applications are also 

found in other areas, such as manufacturing and factory layout. 

3.3 Stationary state equations for MCMS problems 

In Figure 3.1, we visualise the N different job types originating from multiple sources by 

arrows with different line types, and their flow through the k identical servers. 

 
 

… ..

Server k  

… ..

Server 1  

Q ueue, FC FS 

N  job types 

A rrival rates λ i 
Λ  =  Σλ i 
ai =  λ i/Λ  

Service rates µ i 
ρ i =  λ i/µ i 
ρ =  (Σρ i)/k  =  Λ /(kµ i) 
µ i = µ (1 +  δ i) 

N on-dedicated
servers

 

Figure 3.1. Flows of jobs through a MCMS queueing system 

 

Jobs with type i arrive according to a Poisson process with arrival rate λi. Due to the non-

dedicatedness of the servers, the flow through a server consists of all job types. The service 

distribution of job type i is exponential with rate µi and it is the same for all servers. The 

service discipline by which jobs are assigned is first-come-first-serve (FCFS) and if more 

than one server is available, say k of them are available, then each of them has an equal 

probability 1/k to get the next job. Note that the latter assumption is only used to derive the 

state equations. Other server selection criteria (e.g. lexicographically) should lead to the same 

expressions for the performance measures. 

The total arrival rate is given by iλΛ = ∑ . We denote the arrival fraction of class i by 

i ia λ= Λ . The utilisation is represented by ρ, hence the stability condition for this queueing 
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system is given by 1ρ < . The average service rate µ is defined by 1 i iaµ µ= ∑ . After 

some simple calculations we obtain the equivalent expression ( )kµ ρ= Λ  as given in the 

figure. The notation for the relative perturbation from the average service rate is δi as already 

introduced in the introduction. 

To describe state of the queueing system, we will use two vectors w and s of dimension 

N, i.e. each component i contains information about the amount of items of each class i in 

queue or in service, correspondently. Because of the PASTA property (Poisson Arrivals See 

Time Averages), these vectors will provide us all the information about the system that we 

need. Let us now have a closer look at the stationary state equations of the MCMS system. 

The state equations follow from a micro-balance reasoning illustrated in Figure 3.2. The 

net exchange of probability in an infinitesimal time interval from a given state with its 

neighbours has to be zero in an equilibrium situation. Neighbours of a state ( ),w s  with n 

clients are states to or from which a one step transition is possible, either by an arrival event 

(A) or a service completion event (C).  

 

 

( ),w s

( ),iw e s−
iλ

( ),i j iw e s e e− − +  
iw

j jw s µ ( ),i j iw e s e e+ + −

 ( ),iw e s+

( )1
1 1iw

j jw s µ+
+ +

iλ

n - 1 n + 1n   

Figure 3.2. The micro-balance between a state and its neighbours leads to the stationary 

state equations. 

 

Neighbour states have 1n −  or 1n +  clients. If n k> , transition from/to neighbours 

( ),w s′ ′  with 1n +  clients are specified by one of the following events: 

(a) transitions from ( ),w s  to ( ),w s′ ′ : a job arrives and the queue vector is changed as 

' iw w e= +  if the job is of type i, where ie  is a vector with all zero components except, 

for component i, which is 1. 
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(b) transitions from ( ),w s′ ′  to ( ),w s : a service has been completed; if the service of job j 

was completed and job i was in front of the queue before completion, then the state 

( ),w s′ ′  is specified by ' iw w e= +  and ' i js s e e= + − . The probability to have job i in 

front of the queue is equal to the number of jobs of type i in the queue before transition 

wi + 1 divided by the total number of jobs in queue before transition 1w + : 1
1

iw
w

+
+ . 

Analogously, if n k> , then transitions from/to neighbours with 1n −  clients are specified by: 

(a) transitions from ( ),w s  to ( ),w s′ ′ : a job j has been completed by one of the servers and a 

job in front of the queue moves to server; if the job in front of the queue was a job of 

type i (with probability iw
w ), then we have ' j is s e e= − + ; since job i was in the queue 

before completing of job j, the vector 'w  is ' iw w e= − . 

(b) transitions from ( ),w s′ ′  to ( ),w s : an arrival of a job with type i, then ' iw w e= −  and 

's s= ; 

The characterisation of the neighbours for states with n k≤  can be done analogously, the 

details on the neighbours are self-evident from the terms in the stationary state equations 

given below. 

Before stating the stationary state equations, we first introduce the following notation. 

We used already notation w  as the total number of items in the queue, analogously we use 

s  as total number of items in service. The next expressions are obvious: 

; 0,  if ; ,  if .w s n w n k s k n k+ = = ≤ = ≥  

The vector ie  with all zero components except for the component i, which is 1, has also been 

used before. In addition to this vector, we define eij as 1 if i = j and 0 otherwise. Also, we 

define: 

( )
1

1 Ndef

i i
i

s s
k

δ δ
=

= ∑  

and now we can formulate the stationary state equations, dividing the transition rates by the 

average service rate µ and the number of servers k: 
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• n k>  

( )( ) ( )

( ) ( )( ) ( )1

1 1 1

1 ,

1, 1 1 ,
1

N N N
i

i i j j ij i i jk
i i j

s P w s

wa P w e s s e P w e s e e
w

ρ δ

ρ δ
= = =

+ + =

+
− + + + − + − +

+∑ ∑∑
 (3.1) 

 

• n k<  

( )( ) ( ) ( ) ( )( ) ( )
1 1

10, 0, 1 1 0,
N N

n
i i j j jk

i j
s P s a P s e s P s ekρ δ ρ δ

= =

+ + = − + + + +∑ ∑  (3.2) 

 

• n k=  

( )( ) ( )

( ) ( )( ) ( )
1 1 1

1 0,

10, 1 1 ,
N N N

i i j j ij i i j
i i j

s P s

a P s e s e P e s e ek

ρ δ

ρ δ
= = =

+ + =

− + + + − − +∑ ∑∑
 (3.3) 

 

• 0n =  

( ) ( ) ( )
1

10,0 1 0,
N

j j
j

P P ekρ δ
=

= +∑   (3.4) 

 

Using the structure of the arrival process, the equation (3.1) for n k>  can be further 

reduced. For n k−  consecutive arrivals, the probability distribution over the possible vectors 

of the queue state w  is given by the product of the arrival fractions and by the number of 

possible arrival sequences within the vector w . As a consequence, we may write the steady 

state distribution ( ),P w s  as: 

 

( ) ( )
1

, !
!

iwN
i

n
i i

aP w s P s w
w=

= ∏   (3.5) 

 

where the unknown vector ( )nP s  represents the stationary probability distribution over the 

server states s , given that the system contains n jobs (in service plus in queue). A key issue 

in the remainder of this chapter will be how to derive an expression for the ( ),d N k  - vector 

nP  with components ( )nP s . 
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Firstly, we note that substitution of (3.5) in (3.1) gives us the following equation for 

n k> : 

 

( )( ) ( ) ( ) ( )

( )( )( ) ( )

11 1

1 1 1

1 ! 1 !
! !

11 1 1 1 !
1 1 !

qi

q

wwN NN
qi i

n i n
ii qi i q

wNN N
qi i

j j ij n i j
i j qi q

aa ws P s w a w P s
w a w

aw as e w P s e ek w w w

ρ δ ρ

δ

== =

= = =

+ + = −

+
+ + + − + − +

+ +

∑∏ ∏

∑∑ ∏
. 

 

Then, summing all equations for the same n k>  and taking into account that 
1

1N
ii

a
=

=∑ , we 

obtain: 

 

( )( ) ( ) ( ) ( )( ) ( )
1 1

11 1 1
N N

n n i j j ij n i j
i j

s P s P s a s e P s e ekρ δ ρ δ
= =

+ + = + + + − − +∑∑ , 

 

Hence, in a shorthand vector-notation:  

 

( )( ) 1 11 n n nρ ρ − ++ + = +I δ P P AP   (3.6) 

 

Here I denotes the identity matrix and δ  represents a diagonal matrix with elements 

( )sδ  on the diagonal, i.e. [ ] ( ) [ ]s s sξ δ ξ=δ , and the matrix A is defined by its generation 

on an arbitrary ( ),d N k  - vector ξ: 

 

[ ] ( )( )
1 1

1 1 1
N Ndef

i j j ij i j
i j

s a s e s e e
k

ξ δ ξ
= =

 = + + − − + ∑∑A  

 

The equation (3.6) is a second order difference equation for Pn in a ( ),d N k  dimensional 

linear space, which plays a central role in our analysis. 

Note that Pn can also be defined for n k≤ . It is a vector of dimension ( ),d N n , since 

only n of the servers are occupied. Let Ln denote the corresponding linear space of dimension 

( ),d N n  accommodating that vector. The equations (3.2) - (3.4) are equivalent to: 
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1 1n n n n n nρ − += +D P F P B P   (3.7) 

 

where the operators Dn, Fn and Bn on the ( ),d N n - vector ξ  are respectively defined as: 

 

[ ] ( )( ) [ ]: ,
def

n
n n n n ks s sξ ρ δ ξ→ = + +D DL L  

[ ] [ ]1
1

: ,
Ndef

n n n n i i
i

s a s eξ ξ−
=

→ = −∑F FL L  

[ ] ( )( ) [ ]1
1

1: , 1 1 , for 
Ndef

n n n n i i i
i

s s s e n k
k

ξ δ ξ+
=

→ = + + + <∑B BL L  

 

For n k= , we get Bn = A operating between ( ),d N k  dimensional linear spaces. We 

come back to solving these equations in section 3.5. 

 

3.4 The unperturbed case of an MCMS queueing system with class independent 

mean service time 

In the unperturbed case, it is possible to analyse the system using states n, which show the 

number of clients in the system without type differentiation. The transition diagram is quite 

simple (Figure 3.3). 

 

 

k 2  0 1 

µ             2 µ             3 µ               (k -1) µ           k µ k µ 

     λ λ λ λ λ λ 

 

Figure 3.3. Transitions between states in the unperturbed case 

 

The state equations for the probability distribution over n are given by: 

( ) ( ) ( )max 1, 1k
nP n P nρ= −  

and the solution is found in a straightforward way: 
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for n k≥ : 

( ) ( )n kP n P kρ −=  

 

for n k< : 

( ) ( ) ( )1 0
!

nP n k P
n

ρ=  

 

with ( )0P  such that the probabilities sum up to 1. 

Now in case when all service times are equal ( 0iδ = ), the multi-class probabilities 

( ),P w s  are just a multinomial modification of the previously found ( )P n : 

 

for n k≤ : 

( ) ( )
1

0, !
!

isN
i

i i

a
P s P n s

s=

= ∏  

 

for n k> : 

( ) ( )
1 1

, ! !
! !

i iw sN N
i i

i ii i

a a
P w s P n w k

w s= =

= ∏ ∏  

 

This can be checked by substitution in the state equations, and with some computational 

effort it can be seen that they are satisfied. 

But, a lot more information about other solutions of the state equations can be derived. 

This is useful for the exploration of the general case in the next section. First, we observe that 

the eigenvalues and eigenvectors of the matrix A can be explicitly found if all 0iδ = . 

In this case ( 0iδ = ), the matrix δ  in equation (3.6) vanishes and the solutions of this 

equation are immediately found using the eigenvalues and eigenvectors of the matrix A. That 

is, if we have that Pn = z-(n-k)V for some z and V equal to an eigenvector of A for the 

eigenvalue v, then by substituting of this Pn into the equation  

 

( ) 1 11 n n nρ ρ − ++ = +P P AP  
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we obtain the following equation for z:  

 

( ) ( ) ( ) ( )

( )

( )

1

2

2

1

1

1

n k n k n kz V z V z V

zV z V vV

z z v

ρ ρ

ρ ρ

ρ ρ

− − − − − − −+ = + ⇒

+ = + ⇒

+ = +

A

 

 

The eigenvectors and eigenvalues of the matrix A can be constructed as follows. First, 

we observe that 

 

( ) [ ] ( )
,0, ,0

1

!
!

isN
i

k
i i

a
V s k

s=

= ∏…  

 

defines an eigenvector of A for the eigenvalue 1.  Let us interpret it as an eigenvector where 

all k servers are occupied with “real” jobs. In an analogous way, we can find eigenvectors 

( )2, , , Nm h hV …  for eigenvalues m k  where only m servers are occupied with “real” jobs and k – m 

are filled “artificially”. Index hj refers to the number of servers occupied with “virtual jobs” in 

“virtual mode j” with j = 2, …, N.  

Mathematically, this means that we decompose each state ( )1, , Ns s s= …  with s k=  as  

 

1

1
1

1

, 0

,

N
j j

i i i
j

N
j

i j
i

N

j
j

s

h h m

h k

θ θ

θ

=

=

=

= ≥

= =

=

∑

∑

∑

 

 

This allows for many possible decompositions θ. We define  

 

[ ]
( )

1 1
 

!
!

j
ij

N N i

jh
j i i

t
V s k

θ

θ
θ= =

= ∏∏∑  (3.8) 
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Here we define the real mode ( )1
1, , Nt a a= …  and the virtual mode of type j as jt  with 

1j
jt = −  and ( )1 1j

it N= −  for i j≠ . Note that for j = 2, …, N the vector jt is perpendicular to 

( )1, ,1… . 

Again, one can check these eigenvectors by substitution using the definition of A. The 

eigenvalues corresponding to these eigenvectors are completely defined by the first 

component of vector h , which we denote as m = h1. Then, there are k + 1 eigenvalues v = 

m/k for m = 0…k. The eigenspaces corresponding to each eigenvalue of A have dimension 

( )/
2

m k
N k md k m

− + −= −  due to the amount of possible combinations of the last N – 1 

components of the vectors h , given that the first component is equal to m. 

Hence, in the unperturbed situation, each of these eigenvalues and a corresponding 

eigenvector of A gives us the solutions of the second order difference equation (3.6) for n > k. 

Then, by substituting the obtained eigenvalues v = m/k for m = 0…k into the equation 

( ) 21 m mz z vρ ρ+ = +  we find the values of zm.  

 

( ) ( )21 1 1 4 , 0, ,
2m

mz m k
k

ρ ρ ρ
ρ

  = + ± + − = 
  

…  

 

Note that the +sign leads to zm > 1 and the -sign to zm ≤ 1. Only the solutions with zm > 1 

decay for n → ∞  and are acceptable in constructing probability distributions. There are 

( ),d N k  of such solutions. Only one of them, namely with m = k, plays a role in the exact 

solution for the unperturbed case. In this respect, the unperturbed case turns out to be special. 

Of course, one should expect that the situation will be more complex in a general case 

with 0iδ ≠ . 

 

3.5 Solving general MCMS problems 

Let us first construct the solutions of the state equations for n k>  in general (section 3.5.1). 

Then we solve the remaining equations for n k≤  and, thereby, construct the full solution of 

the state equations (section 3.5.2). Next, in section 3.5.3, we consider some special cases. 

Finally, we give some fast approximations of the exact solution in section 3.5.4. 
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3.5.1 The exact solution for n > k 

Let us first reformulate the second order difference equation for the ( ),d N k  vector Pn given 

in (3.6) as a first order difference equation for a ( )2 ,d N k  dimensional vector. Now let us 

consider the vector ( )1,
t

n n n−= P PP . It has to satisfy 1n n+=P HP  with the matrix H given by 

 

( )( )1 11ρ ρρ + + −=  
 

I δ A
I 0

H  

 

Note that solving this backward recursion boils down to determining the eigenvalues and 

eigenvectors of the matrix H . Compared with the previous section, the main difference is 

that all solutions of (3.6) that decay for n → ∞ will play their part in the solution of the state 

equations. The next lemma is about finding the decay solutions for n k> . The following 

information is crucial. 

 

Lemma 3.1 

1. Under the stability condition with all δi sufficiently small, H  has: 

- eigenvalues z satisfying 1z ≤  with total multiplicity ( ),d N k  

- eigenvalues z satisfying 1z > | with total multiplicity ( ),d N k  

 

2. If 0iδ ≠ , A has eigenvalues m
kα , with ( )1

1N
i ii

aα δ
=

= +∑ , m = 0, …, k with the same 

multiplicities and similar eigenspaces as in the unperturbed case. As a consequence, 0 is 

an eigenvalue of H  with eigenspace ( )( )0,ker
t

A  and the same multiplicity ( )1,d N k−  

as before. 

3. N + 1 special eigenvalues of H  corresponding with eigenvectors possessing a product 

structure can be found: 

- there is an eigenvalue 1 with eigenvector ( ), tB B  with: 

 

( )
( )1

!
! 1

i

i

sN
i

s
i i i

as s
s δ=

=
+

∏B   (3.9) 



3.5 Solving general MCMS problems  71 

 

- under the stability condition, there are N eigenvalues 

 

( ) ( )1 1z η ρ η ρ= + − >   (3.10) 

 

where η satisfies a polynomial equation of degree N + 1:  

 

( )
1

11
N

i
i

i i

a δρ η ρ
η δ=

+
+ − =

+∑  (3.11) 

 

which also has the solution η = 1, i.e. z(1) = 1 as above, see Figure 3.4. The 

eigenvector for z(η) is (z(η) C,C)t with: 

 

( )
( )1

!
! 1

i

i

sN
i

s
i i i

as s
s δ η=

=
+

∏C   (3.12) 

 

One of these eigenvalues z(η0) crosses z = 1 into z < 1 if ρ crosses 1 into the region ρ 

> 1 where the stability condition is violated. 

 
 

η =  1

η  =  - δ i

η   

 z (η )  

 

Figure 3.4. Graphical solution of the polynomial equation for some special eigenvalues 

of H 
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Proof. To start with we note that z = 1 is an eigenvalue of H  corresponding with the given 

eigenvector. This follows simply by substitution. Note that in the eigenvector the 

probabilities over the states are proportional to the products of the required service fractions. 

Now the first part of the lemma is simply a consequence of the well-known perturbation 

theory for eigenvalues of matrices, cf. Golub (1996). Next, we observe that also in the 

perturbed case the eigenvalues of A are m
kα , with m = 0, …, k, but now the eigenspaces are 

slightly different. They are found using a N-vector perpendicular to 1 + δ = (1 + δ1,…,1 + δN)t 

instead of the expressions in section 3.4. Hence, the dimension of the eigenspaces 

corresponding with m/k is the same as before. 

The remainder of the lemma is a matter of substituting the specified eigenvectors in the 

eigenvalue equation and checking that it is satisfied. Due to the special structure of the 

eigenvectors, this is straightforward, therefore the details are left to the reader. The behaviour 

of the crucial eigenvalue follows immediately from Figure 3.5 by noticing that the derivative 

of the right hand side at η = 1 equals -ρ.  ■ 

 

Let us now discuss the consequences of the Lemma 3.1. First, it should be noted that in 

the case k = 1 (a) there are N - 1 eigenvalues 0 for any N, (b) there is an eigenvalue 1, and (c) 

there are N real eigenvalues >1 given by the special polynomial equation. This provides 

complete information on the eigenvalues. In other cases, other eigenvalues besides the special 

ones play a role. In Figure 3.5 below, it is shown how the eigenvalues evolve from their 

unperturbed values if the perturbation is "turned on". 

To plot the changes of eigenvalues, we use a case with N = 4, k = 3, ρ = 0.9. To change 

δi, we use function δi = ait with a2 = 0.1, a3 = 0.15, a4 = 0.2, when δ1 is chosen such, that 

( )11
1i

i

N a
i δ+=

=∑ . In the Table 3.1, we present the perturbed δi for t = 0,…,9, and next we present 

how the eigenvalues change with these perturbations.  
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Table 3.1. Perturbation of delta 

t δ1 δ2 δ3 δ4 
0 0 0 0 0 
1 -0.529 0.1 0.15 0.2 
2 -0.665 0.2 0.3 0.4 
3 -0.727 0.3 0.45 0.6 
4 -0.763 0.4 0.6 0.8 
5 -0.786 0.5 0.75 1 
6 -0.803 0.6 0.9 1.2 
7 -0.815 0.7 1.05 1.4 
8 -0.825 0.8 1.2 1.6 
9 -0.832 0.9 1.35 1.8 
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Figure 3.5. A sketch of the behaviour of the eigenvalues of H with the strength of the 

perturbation 

 

Let us now use the information on the eigenvalues and eigenspaces of H  to solve the state 

equations for n k≥  exactly in terms of the state probabilities for n k= . This can be done 

using the following recipe. Let us use the standard notation ( ),d d N k= .  

Introduce:  

• Ω as the d × d diagonal (or Jordan) matrix corresponding with the eigenvalues of H  

with |z| > 1 

• Ξ as the d × d matrix of upper parts of the corresponding (generalised) eigenvectors 
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• Note that Z = ΞΩΞ-1 satisfies 

 

( ) 11 ρ ρ−+ + = +I δ AZ Z  

 

• Now 

 

( )1 1n k n k
n k k

−− − −= =P Z P ΞΩ Ξ P  

 

is an exact solution of(3.6) for n ≥ k starting at P for n = k. 

3.5.2 The exact solution for n ≤ k 

Consider ( )n sP  for n < k with Pn in Ln as in (3.7). Again, the state equations for n < k have a 

backward recursion structure. 

The equation for n = k: 

 

( )( ) 1 11 n n nρ ρ − ++ + = +I δ P P AP  

 

reduces to: 

 
1

1k k k
−

−=P Z F P  

 

by using the equation for Z. 

 

For n < k, we obtain: 

 
1 1

1 1n n n n n n nρ − −
− += +P D F P D B P  

 

Hence, the complete solution can now be represented as: 

 

1 1 1 0n n n n n− −= =P Q P Q Q Q P  
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where Qn follows recursively from 

 
1

k k
−=Q Z F  

 

and 

 

( ) 1
1n n n n nρ −

+= −Q D B Q F  

 

Of course, P0 is a free constant determined by 

 

( ), 1P w s =∑  

 

A simple computation shows that 

 

( ){ } 1
11

0 1 1 1 1 1 11 1
1 , , ,k k k kk

k

−
−−

− − −
= + + + + −P 1 Q 1 Q Q 1 I Z Q Q  

 

Here we denote with ,n n
1 X  the innerproduct of X in a ( ),d N n  - dimensional space with 

the ( ),d N n  - vector n1  with all components equal to 1. 

Thus, the exact solution for all n has been derived. 

3.5.3 Some special cases 

To illustrate the theory, we consider two cases where the algorithm can be executed more 

explicitly: (I) the case k = 1, (II) the case k = 2, N = 2. 

In the case k = 1, we have states s = e1,…,eN if the server is occupied with s indicating 

the type of job in execution. The eigenvalues are given by z(ηj), j = 1,…,N as defined by 

equations (3.10) - (3.11); the matrix of eigenvectors Ξ has elements 
( )1

i

i j

a
δ η+

. The solution of 

(3.6) is given by: 

 

0
n

n
−=P P Z a  
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Here a denotes the N-vector with components ai. As an example we consider the case of 

2 classes. Then the eigenvalues are z1 = 0, z2 = 1 and 

 

( ) ( )( ) ( )( ) ( )( ) ( )22
3,4 1 2 1 21 1

1 1 1 4 1 2 1 ,
2

N N
i i ii i

z aρ δ δ ρ ρ δ ρ δ δ δ
ρ = =

 = + + + + ± − + + + + + −  
∑ ∑

 

Also, we obtain the following explicit expressions for Z and P0: 

 

( )( )
( )( )

1
1 2 1

01
2 2 1

1
, 1

1
a a

a a
ρ

ρ

δ ρ
ρ

δ ρ
 + + −

= = −  − + + 
Z P  

 

In case k = 2 and N = 2, we start with the observation that the special eigenvalues in 

equations (3.10) - (3.11) can be explicitly computed, because the degree of the equation is 3 

and the solution η = 1 is already known. This leads us to the following quadratic equation for 

z: 

( ) { } ( ){ }2 2
1 1 2 1 2 1 20 2 1 1

def
eq z z zρ ρ ρ δ δ ρ δ δ ρ δ δ= = − + + + + + + + + −  

 

Now, only 2 of the 6 eigenvalues of H  are still unknown; they can be found from the 

characteristic polynomial ( ) ( )( )20 det 1
def

z z zρ ρ= = − + + + +eq D I A  by dividing out the 

known eigenvalues. Here we denote by D the diagonal matrix with the average perturbation δ 

for the respective states on the diagonal. Hence, we decompose 

( ) ( ) ( ) ( )1 21z z z eq z eq z= −eq . Therefore, the remaining 2 eigenvalues have to satisfy a 

quadratic equation with coefficients that can be explicitly given in terms of the original 

matrix coefficients as: 

 ( ) ( ) { }2
2 1 2 1 1 2 2

1 10 1 1
2 2

def

eq z z z a aρ ρ ρ δ δ δ δ = = − + + + + + + 
 

 

Note that the latter equation gives rise to one eigenvalue z > 1. 

Now Z is a 3 × 3 matrix operating on the probabilities of the states (2, 0), (1, 1), (0, 2) for 

the jobs in execution when the servers are occupied. The column of Ξ corresponding with an 

eigenvalue ( )1z ρ η ρ= + −  becomes ( ),1,1 tv v  with ( ) ( ){ }1 2 2 1v a aη δ η δ= + + . For the 

other eigenvector corresponding with z > 1 satisfying eq2(z) = 0, we find 
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( ) ( ) ( ) ( )( )1 2 2 11 ,1, 1
t

a q z a q zδ δ− + +  with ( ) ( ){ } ( ) ( ){ }2 1 1 1 2 22 1 1 2q z z a aδ δ δ δ= − + + − + . 

Note that one of the components of this eigenvector is negative. Apparently, this can happen 

even though the probabilities will eventually be positive. It is clear that also in this case the 

solution can be given explicitly in terms of the parameters of the problem. 

3.5.4 Approximate solution 

To conclude this section, we shall introduce some approximations of the state probabilities 

( )nP s . These approximations will be constructed using partial solutions of the state equation 

for n > k and n < k, which have a product structure. However, the equation for n = k can only 

be satisfied if k = 1. In the general case with k >1, the equation for n = k fails to be satisfied. 

The advantage of the approximations is that (I) the computation of the approximation 

requires algebra in spaces of considerably lower dimension and (II) all sums over states in the 

performance measures can be determined explicitly due to the product structure. The 

approximation is given by: 

 

for n < k: 

( ) ( )
( )1 ! 1

i

i

sN
n i

n s
i i i

aP s C k
s

ρ
δ=

=
+

∏   (3.13) 

 

for n ≥ k: 

( ) ( ) ( )
( )1 1

!
! 1

j

j

sNN
kn k j

n i i i s
i j j j i

a
P s z D s

s
γ η

δ η

−− −

= =

=
+

∑ ∏  (3.14) 

 

with ηi, zi as defined in (3.10) - (3.11) and 

 

( ) ( )1 1

N
j

i
j j i

a
D η

δ η=

=
+∑  

 

In order to determine the constants C and γi we require that the total probability sums to 1 

and that the expected number of items of type i in service is correct for each i. This provides 

us N + 1 equations for N + 1 unknowns: 

 



78  Chapter 3 – Multi-Class M/M/k queue 

( ) ( )
( )

( )

1
1

1 1

1

1 0

1 !

1
!

nN k
m

i i m m
i nm i

nN k

i
i n

ka nD Cb
k n

k
C

n

ρ
η ϕ ρ

δ η

ρ
ϕ

−
−

= =

−

= =

   + = +  

+ =

∑ ∑

∑ ∑
 

 

with ( ) 111
def

i i izϕ γ
−−= −  and hence: 

 

( ) ( )
1

1

0
1 1

!

nk

n

k nC
n k
ρ

ρ

−
−

=

   = − −  
   

∑  

 

An even simpler approximation is found, if we use for 1n k> −  only the critical mode 

corresponding with the least decay for increasing n. In this approximation, we use a simple 2 

class approximation to determine ηcr < 1 from a quadratic equation. The first class is the 

critical class, all the other classes are joined into a non-critical class with 1ncr cra a= − , and 

δncr follows from the requirement ( ) ( )1 1 1cr cr ncr ncra aδ δ+ + + = . Further, the reasoning to 

get a quadratic equation exploits that η satisfies the special two-class equation (3.10) - (3.11) 

of degree 3. This is similar to the example with N = 2 at the end of the previous subsection. In 

this case, we require the expected number in service disregarding type to be correct and we 

obtain the same value for C as given here above, but now: 

 

( ) ( )1
1

1
1 1

!

nk

cr cr
n

k
z C

n
ρ

γ
−

−

=

  = − − 
  

∑  

and the other coefficients vanish. 

3.6 Accurate information on performance measures 

Here we shall provide some further insight in the behaviour of some interesting performance 

measures related to stochastic variables, such as the waiting time w, the queue length q and 

the number of items of type i in queue qi. Performance measures that we consider are 

expectations, variances and probability for positivity of these stochastic variables. Moreover, 

since it is clear that there is correlation between these stochastic variables, we also shall 

provide formulas for some conditional expectations and correlation coefficients. Of course, 
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the clue that such exact formulas can easily be derived lies in the fact that series of geometric 

type can simply be summed. To start, we notice that: 

 

( ) ( )

( ) ( )

( ) ( )

1

1

1

0 ,

0 ,

0 ,

k k

k k

i
i k k

P q

P w

P q

−

−

−

> = −

> = −

> = −

1 Z I P

1 Z I ZP

I Z I P

 

 

and the performance estimators for the total number of items in queue are: 

 

[ ] ( )

( ) [ ] ( )

[ ] [ ]

2

32

22

,

1 2 ,

k k

k k

E q

E q E q q E q

Var q E q E q

−

−

= −

   = − + = −  

 = − 

1 Z I ZP

1 Z I ZP  

 

Then we can write down the performance estimators for the number of items in queue for 

each type of items: 

 

[ ] ( )
[ ] [ ]

|i i

i i

E q q n k a n k

E q a E q

= − = −

=
 

( ) ( ) ( )
( ) ( )

[ ] ( ) [ ] [ ]

2

2

2

1 | 1

1 1

1

i i i

i i i

i i i i i

E q q q n k a n k n k

E q q a E q q

Var q E q q E q E q

 − = − = − − − 
   − = −   

 = − + − 

 

We can also estimate the covariance between the numbers of items of different classes in 

queue: 

 

( )( )
( )

( ) [ ]

| 1 for 

1 for 

,

i j i j

i j i j

i j i j i j

E q q q n k a a n k n k i j

E q q a a E q q i j

corr q q E q q E q E q

 = − = − − − ≠ 
   = − ≠  

   = −   
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Here we use the notation n1  as before in determining P0. The matrix i
nI  is a diagonal matrix 

of dimension ( ),d N n  with 1 for each state s  that contains type i and 0 elsewhere. Note that 

Little's law is satisfied and the expected waiting time does not depend on the type of item. 

In an analogous way, we can analyse the stochastic variables R = the number of items in 

the system, Ri = the number of items of type i in the system and BOi = the number of 

backorders for type i, ( )max 0,i i iBO R st= −  with sti a given positive integer representing the 

stock level in spare part networks. Now we obtain: 

 

( ) ( )
1 1

,| | ,
k k

i m
i i n n

n m n m
P R m R k P R m R n

− −

= =

= < = = = =∑ ∑ I P  

( ) ( ) ( )
( )

( ) ( ) ( )

( )

( ) ( )( )( )

( )

( ) ( )( ) ( )

( )

max ,0

,

max ,0

, 1

max ,0

1, 1

max ,0

| | |

1 ,

, 1

, 1

m

i i i i
r m k n k r

m
n k rr i m r n k

i i k k
r m k n k r

m l rr i m r r
i k i k

r m k l r

m rr i m r r
i k i k

r m k l r

P R m R k P q r R n P R q m r R n

n k a ar

la ar

la ar

∞

= − = +

∞
− − − − −

= − = +

∞ −− − −

= − =

∞ − +− − −

= − =

= ≥ = = = − = − =

−= −

= −

= − −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

I Z P

I Z Z P

I I Z Z P

 

 ( ) ( ) ( )| |i i iP R m P R m R k P R m R k= = = < + = ≥  

( )

( ) ( )( )
( )

1
, ,

1, , 1

, ,

,

, 1

k
i m i l

i j n n n
n m l

r tr t i m r i l t r t
i j n n i j k

r t V m l

P R m R l

r t a a a at

−

= +

− − −− − − − −

∈

= ∧ = =

++ − − −

∑

∑

I I P

I I I Z Z P
 

 

Here we use the notation ,i m
nI  for the diagonal matrix of dimension ( ),d N n  indicating the 

states with m items of type i with 1 and 0 elsewhere. The matrix I is the usual identity matrix. 

In this derivation, we use r to count the number of type i items in queue. In the joint 

distribution, t counts the number of type j items in queue. In that case, the summation runs 

over a domain V(m, l), where r runs from max(0, m - k) to m and t runs from max(0, l - k) to l, 

while (m - r) + (l - t) ≤ k. The precise information on the distribution of the numbers of type i 

and j in the system will play a role in the backorder computations. 

Some other quantities are simpler to derive. Using Little's theorem, we find the first 

moments: 
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[ ] [ ]
[ ]

i i i i

i i i

E R E q

E S

λ µ

λ µ

= +

=
 

 

Moreover, we can now easily derive the following second moments and correlation 

coefficients: 

 

[ ]

( )

( )

( )

2 2

2 2 2

1 12 1

1

21 1

1 11

1

2

, , -

, -

, , -

i i

i

i j i j

i i i i i

k
s s

i n n k k
n

s
i j j k k

k
s s s s

i j n n k k
n

i j i j i j j i i j

E R E q E S E S q

E S

E S q a

E S S

E R R E S S E S q E S q E q q

χ χ

χ

χ χ

− −−

=

−− −

− −⋅ ⋅ −

=

     = + +     

  = + 

  = 

  = + 

         = + + +         

∑

∑

P I Z P

I Z Z P

P I Z P

 

 

In these formulas, 
2

is
nχ  and i js s

nχ ⋅  are the diagonal matrices of dimension ( ),d N n  with the 

square number of items of type i in s  (i.e. 2
is ) or, accordingly, the product of the numbers of 

types i and j items in s  (i.e. i js s⋅ ) as the diagonal element corresponding to s . 

The first and second moments and the correlation coefficients of the backorder variables 

with stock levels sti = 0 are also known, since the backorders and the numbers of items in the 

system coincide then. Next, this sort of information for backorders with safety levels sti > 0 

can be derived using recursion with respect to sti. This basic idea can already be found in 

Sherbrooke (1992). Here we extend it to include correlations between backorders of different 

types. The recursion relations are as follows: 

( ) ( ) ( )
( ) ( ) ( )

( ) [ ] ( )

1 1

   with   1

   and    0 , 0 1

i i i i i i

i i i i i i

i i i

E BO st E BO st P R st

P R st P R st P R st

E BO E R P R

   + = − ≥ +   
≥ + = ≥ − =

  = ≥ = 

 (3.15) 

 

( ) ( ) ( ) ( )

( )

2 2

2 2

1 1

   and    0

i i i i i i i i

i i

E BO st E BO st E BO st E BO st

E BO E R

       + = − − +      
   =   
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

0 0

1 1 1

   with   1

             1 1,

i i j j i i j j j j i i

j j i i j j i i j j i i

j j i i j j i i j j i i

E BO st BO st E BO st BO st E BO st H R st

E BO st H R st E BO st H R st E BO st R st

E BO st R st E BO st R st P R st R st

     + + = − − +     
     − + = − − ∆ −     
   + ∆ − = ∆ − − ≥ + =   

( ) ( ) ( )
( ) ( ) ( ) ( )

             1, , ,

   and    0 0 , 0,

j j i i j j i i j j i i

i j i j i i i i i

P R st R st P R st R st P R st R st

E BO BO E R R P R R st P R st

≥ + = = ≥ = − = =

   = ≥ = = =   
 

 

Here we used the notation H for the Heaviside function H(x) = 1 for x > 0 and = 0 else. 

Further, 0∆  denotes the Dirac function with ( )0 x∆  = 1 if x = 0 and ( )0 x∆  =0 else. If 

necessary, the higher order moments and the correlations between backorders of various item 

types can be derived in an analogous way. 

3.7 Some numerical results 

In order to derive numerical results, we implemented the exact solutions and the 

approximations as described above in MATLAB. A wealth of interesting phenomena can 

now be quantitatively analysed. Let us just show a few of the results. 

3.7.1 The average waiting time in MCMS systems 

The effects of different service times for various classes of items can easily be illustrated. 

Consider a system with 2 classes and k servers. The parameters are chosen as a1 = 1/3, a2 = 

2/3. The first type of items has an average service rate smaller than the second type of items. 

In terms of δ1 and δ2 this can be represented as: 

 ( ) )
2

1 3 2
1 2 2 2 3 1

1
, 1 ,     with    0,      i.e.     1i

ii

α
δ

δ δ δ δ δ δ
+

=

= − = − ∈ = ∑  

Let us now compare for various choices of ρ and k the expected waiting time in the 

system with δ > 0 with those for M/M/k where δ = 0 (Figure 3.6). The conclusion that the 

ratio increases with δ is not surprising, but it is nice that we can explicitly determine how it 

increases.  
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Figure 3.6 Increasing differences between service characteristics of classes lead to 

increasing waiting times 

3.7.2 Variance per item and correlation between different types of items. 

Of course, a similar behaviour as in Figure 3.6 is found for the average number of items in 

the system. It is also interesting to notice that the variance-to-mean ratio of the number of 

items in the system can easily be computed. It behaves as shown on Figure 3.7. As a 

comparison one should keep in mind that the variance-to-mean ratio equals 1 in the classic 

VARI-METRIC model, because the repair shops are modelled as M/G/∞ queues. 
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Figure 3.7 Increasing differences between service characteristics of classes lead to 

increasing variance to mean ratio 
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Let us again consider the same example, but now with our focus on the interdependency 

between stochastic variables for different types of items. In Figure 3.8, the behaviour of the 

correlation coefficient is shown. 
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Figure 3.8 Increasing differences between service characteristics of classes lead to 

increase of the correlation coefficient 

 

From the figure above, we see that the correlation between backorder levels can be 

significant. Even at a moderate utilisation (75%), the correlation coefficient may exceed 0.5. 

For high utilisation (ρ = 0.95), it is clear that the correlation is very high (around 0.9), 

suggesting that it is relevant to take the correlations into account when estimating the system 

availability. In the next subsection, we deal with this issue. 

3.7.3 Comparing approximations for the system availability 

Let us first have a closer look at the asymptotic expansion of the nonlinear system availability 

function (2.1). The VARI-METRIC models use normally a linear approximation (2.5) of this 

function (cf. Chapter 2): 

 

( )
( )

1
1( )

11
ech

mj
j INDm ECH N

A E BO st
B ∈∈

 = −  ∑ ∑  

 

where B is the size of the installed base at location m. Although this approximation seems 

adequate for infinite repair shop capacities, it is questionable whether this is also true in the 

case of finite capacities. The latter means that the number of backorders of different 

components at the same repair shop are mutually correlated. This is a severe complication, as 
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the expectation of the product of backorders cannot be taken term-wise anymore. Still, 

equation (2.5) can be seen as a linear approximation of (2.1), and then the correlation does 

not play a role anymore. The quality of this approximation is still unknown, however. The 

analysis of MCMS models provides insight in the joint probability distribution of the number 

in repair for all items. This gives us the expectations for backorders per item as well as the 

correlations between items. Therefore, it is possible to have an approximation where also the 

quadratic terms are taken into account: 
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1
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Note that the correction to the linear approximation is positive. Here we use exact 

expressions for the moments of the backorders. In the next figure, we show the difference 

between the two approximations. Let us take an example of a single-location, single 

indenture system with k = 4 servers and N = 5 types of items processed in the same repair 

shop. The arrival (failure) rates fractions are ai = 0.2 for all i. For the service rate deviation δi, 

we put ( )0.5 1i −  for i = 2,…,5 and δ1 is negative = -21/31 so that ( )1 1i ia δ+ =∑ . All spare 

part levels are equal to sti = 7 items in stock. The size of the installed base B is 15. The 

utilisation rate is varied between ρ = 0.6 and ρ = 0.84. 
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Figure 3.9 Approximations of the system availability 
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In the Figure 3.9, we have also shown another approximation for the system availability, 

denoted by Ainf. This estimate is obtained under the assumption of infinite repair capacity and 

based on a general service time distribution (waiting and repair together!) for items of type i, 

having a mean value Ri as derived in section 3.6. Using Palm's theorem, cf. Palm (1938), then 

the number of items of a type i in the repair shop has a Poison distribution with Ri as 

parameter. This infinite capacity approximation is often used in practice, cf. Rustenburg 

(2000). Note from the figure above that considerable differences between the approximations 

of the system availability arise for high utilisation rates. Moreover, the approximation A2, 

which is closer to reality, lies between the approximation A1 and Ainf. This means that the 

approximation errors of the new VARI-METRIC method are caused by ignoring backorders 

correlations.  

 

3.7.4 Computational efforts 

To estimate the computational efforts needed to solve the problem exactly, we estimated the 

CPU time usage for the most demanding computations, namely the calculation of the 

eigenvectors of the matrix H. Below, we show both the dimension d of the vector P and the 

matrix H , and the CPU-time required to compute the eigenvectors. The values are given for 

various values for the number of item classes N and the number of servers k. The computing 

time was estimated in seconds using MATLAB 5.3 with NAG toolbox, using a Pentium II-

350 PC with 128Mb RAM and under Windows NT. 

The matrix H  is first balanced and then reduced to upper Hessenberg form using real 

stabilised elementary similarity transformations. The eigenvalues and eigenvectors of the 

Hessenberg matrix are calculated using the QR algorithm. Next, the eigenvectors of the 

Hessenberg matrix are transformed back to the eigenvectors of the original matrix H  (cf. 

Golub and Loan, 1996, Saad, 1992). The total computation time of both these algorithms is 

polynomial in dimension of the matrix H  (Figure 3.10, Table 3.2 and Table 3.3). 

The highest dimension of the cases solved here (d =715, for 5 items and 9 servers) seems 

already quite high for a practical use, and shows that this exact algorithm can be easily used 

in practice, certainly if a faster computer is used. Otherwise, the approximation scheme 

(section 3.5.4) can be applied. 
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Figure 3.10 Computing times and dimensions of the vector P for different number of 

item classes in the system and different amounts of servers 

 

Table 3.2 Computing time  (sec.) required to find eigenvalues for different number of 

item classes in the system and different amounts of servers 

 1 ser. 2 ser. 3 ser. 4 ser. 5 ser. 6 ser. 7 ser. 8 ser 9 ser. 10 ser.

2 classes 0 0 0 0 0 0 0 0 0 0.01
3 classes 0 0 0 0.01 0.02 0.05 0.09 0.16 0.271 0.41
4 classes 0 0 0.01 0.07 0.26 0.771 2.583 8.382 19.618 43.853
5 classes 0 0.01 0.07 0.43 2.484 15.752 60.387 201.38 720.55 -
6 classes 0 0.07 0.24 2.474 26.448 155.30 - - - -
 

Table 3.3 Dimensions of the vector P for different number of item classes in the system 

and different amounts of servers 

 1 ser. 2 ser. 3 ser. 4 ser. 5 ser. 6 ser. 7 ser. 8 ser 9 ser. 10 ser.
2 classes 2 3 4 5 6 7 8 9 10 11 
3 classes 3 6 10 15 21 28 36 45 55 66 
4 classes 4 10 20 35 56 84 120 165 220 286 
5 classes 5 15 35 70 126 210 330 495 715 1001 
6 classes 6 21 56 126 252 462 792 1287 2002 3003 

 

3.7.5 On the quality of the approximate probability distribution. 

Finally, we shall provide some insight in the errors by using the simpler N mode or 1-critical 

mode approximations introduced in section 3.5.4. Let us take an example with N = 5 classes 

of items with arrival fractions ai = 0.2 for all i. For the service rate deviation δi, we put 
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( )0.5 1i −  for i = 2,…,5, δ1 = -21/31, so that ( )1 1i ia δ+ =∑ , where ( )1i ia δ+  represent the 

service fractions. The utilisation rate is varied between ρ = 0.7 and ρ = 0.95. The number of 

servers is varied between k = 1 and k = 4. In the next figure (Figure 3.11), the relative errors 

for the first and second moments are compared to the exact solution. 

 

N-mode, first moment

0.0%

5.0%

10.0%

15.0%

20.0%

71
.0%

75
.0%

79
.0%

83
.0%

87
.0%

91
.0%

95
.0%

utilization rate

er
ro

r

N-mode, second moment

0.0%

5.0%

10.0%

15.0%

20.0%

71
.0%

75
.0%

79
.0%

83
.0%

87
.0%

91
.0%

95
.0%

utilization rate

er
ro

r

1 server
2 servers
3 servers
4 servers

1-mode, first moment

0.0%

5.0%

10.0%

15.0%

20.0%

71
.0%

75
.0%

79
.0%

83
.0%

87
.0%

91
.0%

95
.0%

utilization rate

er
ro

r

1-mode,second moment

0.0%

5.0%

10.0%

15.0%

20.0%

71
.0%

75
.0%

79
.0%

83
.0%

87
.0%

91
.0%

95
.0%

utilization rate

er
ro

r

1 server
2 servers
3 servers
4 servers

 

Figure 3.11 The approximate distributions are usually rather accurate for high 

utilisation rates 

 

In these examples, with moderate ratios of service fractions for different classes and high 

utilisation rates, the errors are around 5%, which is quite reasonable. Of course, one should 

be careful with these approximations if the number of servers is large. 

The approximations are better for high utilisation rates, since the smallest (critical) 

eigenvalue (>1) becomes closer to one and the influence of the others eigenvalues becomes 

negligible. This is known as state space collapse in heavy traffic approximations. For further 

discussions of this phenomenon, we refer to R.J. Williams (1998) and M. Bramson (1998).  
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3.8 Conclusions and generalisations 

In this chapter, we derived a method for the exact analysis of multi-class, multi-server 

queues, based on a classical method using the stationary state equations. Thereby, we have 

answered research question 2 as stated in Chapter 1. Though conceptually we only deal with 

a perturbation of the well-known single class M/M/k system, the structure of the solution 

becomes a lot more complex. Using the exact solution, several performance measures of the 

MCMS system can be studied in terms of formulas with a finite number of terms. The 

computational effort to find the exact solution depends on the number of classes N and the 

number of servers k. Representative for the computational effort is the dimension of the linear 

space used in section 3.5, i.e. ( ) ( ) ( ){ }, 1 ! ! 1 !d N k N k k N= + − − . For large instances of the 

problem, some well-founded approximation can be given which only relies on matrix 

inversion in a N-dimensional space, or even simpler, using only a 2 class reduction, have a 2-

dimensional character. 

The exact method introduced in this chapter can in principle be generalised to problems 

with non-identical servers, but the computational effort will increase since we will have to 

keep track of states of each server and then we get ( ), kd N k N= . Also, certain situations 

with priority classes can be tackled in the spirit of this chapter (cf. Chapter 6). 

 

 





   

Chapter 4 

Effects of finite repair capacity in multi-echelon,  

multi-indenture service part supply systems 

Abstract 

 

In this chapter, we consider multi-echelon, multi-indenture supply systems for repairable 

service parts with finite repair capacity. We show that the commonly used assumption of 

infinite capacity may seriously affect system performance and stock allocation decisions if 

the repair shop utilisation is relatively high. Both for the case of item-dedicated and shared 

repair shops, we modify the well-known VARI-METRIC method to allocate service part 

stocks in the network. The repair shops are modelled by (single or multi-class) multi-server 

queueing systems. We validate our procedure by comparison to results from discrete event 

simulation. This comparison shows that the accuracy of the technique presented in this 

chapter is on average more than five times as close to simulated values as the classical 

VARI-METRIC technique. This is also the answer to our third research question as stated in 

Chapter 1. 
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This chapter is based on the paper: 

“Effects of finite repair capacity in multi-echelon, multi-indenture service part supply systems.” 
A. Sleptchenko, M.C. van der Heijden, A. van Harten, International Journal of Production 
Economics, 73(3), 209-230 
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4.1 Introduction 

In this chapter, we extend the VARI-METRIC model to a model with finite repair capacities. 

We model the repair shops using multi-class, multi-server queueing systems as presented in 

the previous chapter. Our aim is to get insight in the impact of capacity restrictions on the 

system performance in terms of the expected number of backorders, and system availability. 

Also, we will examine how the service part allocation in the network is affected by the finite 

capacity. In other words, we will examine to which extent the use of the infinite capacity 

assumption will lead to sub-optimal decisions (lower availability for the same budget). 

Similar to Chapter 2, we define a repair shop as a part of a location that has its own 

repair facilities. We consider two variants of repair facilities: 

• an item-dedicated repair facility that is able to repair only one kind of items. Then every 

location has as many repair facilities as the number of items. 

• a cluster-dedicated repair facility, where multiple kinds of items can share the resources. 

Here we define a cluster as a set of items, which can be repaired at the same facility using 

the same shared repair resources (personnel, equipment). There is no restriction in the 

composition of the clusters.  

In the next section, we will first give a preliminary analysis of the impact of finite capacity. 

We will show that simply “plugging in” average throughput times in the VARI-METRIC 

model may lead to inaccurate results. Next, we will develop a method to optimise spare part 

stock levels under finite repair shop capacity, which is an extension of Slay’s  

VARI-METRIC method (section 4.3). In section 4.4, we compare the system availability 

obtained from a numerical simulation for different input sets to the system availability 

estimated by presented approximation. Finally, we present our conclusions in the last section. 

 

4.2 A preliminary analysis of the impact of finite capacity 

As mentioned in the introduction, a simple approach to deal with finite repair capacity is to 

measure throughput times and plug these values as repair times in the (VARI-)METRIC 

model. However, this may lead to inaccurate intermediate results, as we will show in this 

section. The issue is that the aforementioned approach does not guarantee that the variance of 

the number of items under repair is correctly estimated. 

To this end, we compare two models. In the first model, we have a finite capacity repair 

shop where the part throughput time consists of waiting time and repair time. A single repair 
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shop handles all items. Assuming for this simple example that the repair times are the same 

for all items, we can model the repair shop as an M/M/k queue. In the second model, we 

assume an infinite capacity repair shop, modelled as an M/G/∞ queue, where the service time 

equals the sum of the waiting time and repair time resulting from the finite capacity system as 

found from the first model. Then, the number of parts under repair in the second model is 

Poisson distributed, so that the variance of the number of parts in the repair shop equals the 

mean. Obviously, the latter need not to be true in the first model. Hence the error made by 

using a simple M/G/∞ queueing system is caused by misspecification of the variance of the 

number of items in the queueing system.  

To compare these models for repair shops, we analyse simple models for both single-

echelon and two-echelon models. The two-echelon model consists of one central depot and 

one local base. We assume that all repair shops have finite capacity and that the utilisation 

rates and number of servers are equal for all repair shops. For these models, we first find the 

mean number of items in service based on utilisation rate and number of servers. Then, we 

optimise the stock levels according to the VARI-METRIC method, where the variance of 

number of items in repair is equal to the mean of this number for different availability levels, 

from 0% to 100%. Thereby, we estimate the system availability using the infinite capacity 

assumption. Also, we estimate the system availability based on a finite capacity repair shop 

for each combination of stock levels, as follows. We can easily find the variance of the 

number of items in the repair shop, proceeding from a M/M/k queue. This variance, which is 

generally different from the mean, is used to improve the estimate of the system availability 

using the VARI-METRIC method.  

Using the results for two simple systems (one echelon and two echelon), we can find the 

maximum availability error (absolute difference in availability between an M/G/k and an 

M/G/∞ repair shop) corresponding to every combination of number of servers and utilisation 

rate. Then, we can make plots (Figure 4.1), which show us for every number of servers and 

for every utilisation rate the maximum error in the system availability if we ignore finite 

repair capacity. 
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Figure 4.1. The availability errors for different numbers of servers and different 

utilisation rates (one- and two-echelons systems). 

 

These plots show us the critical utilisation rates in simple systems. For example, if one 

tolerates an error of 2 percent points in availability for a two-echelon system with k = 4 

servers, the maximum acceptable utilisation rate to use VARI-METRIC is approximately 

0.35 or less (all values for which left function on every plot is below the dashed line). 

 

4.3 Stock allocation under finite capacity 

It has been shown in the previous section that ignoring finite capacity can have a significant 

influence on the estimate of the availability. Therefore, we will develop a variant of the 

VARI-METRIC method, taking into account finite capacity of repair shops.  

Sherbrooke (1992) shows that the expected number of backorders depends on the mean 

and variance of the number of items in the pipeline. To calculate these pipeline 

characteristics, we need the mean and variance of the number of items in the repair shop. If 

the repair shop is modelled as M/G/∞ queue, the number of items in the repair shop is 

Poisson distributed. However, such a simple expression is not available for single-class, 

multi-server queues in case of a general service time distribution (if repair shops are item-

dedicated) or multi-class multi-server queues (if repair shops are cluster-dedicated). There are 

only few useful results from literature, because most queueing theory focuses on the mean 

and (sometimes) variance of the number of items in queue rather than in the system (in queue 

plus in service). It is hard to derive the variance of the total number of items in the system 

from these results, because (a) the variance of the number of items in repair is not known and 

(b) the numbers of items in queue and in repair are not independent. For the multi-class, 

multi-server M/M/k queue, we can use the results from Chapter 3. This will be discussed in 
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section 4.3.1. Obviously, we can use these results for the single-class, multi-server M/M/k 

queue as well. Then, we discuss the impact of finite capacity on the optimisation procedure in 

section 4.3.2. 

4.3.1 Multi-class M/M/k queue 

The repair shops at the lowest echelon are usually run by a small crew of multi-skilled 

specialists that are able to handle a certain set of repair jobs. This gives rise to multi-class 

multi-server models, where several classes of items with their own arrival and service 

processes share the same queue and the same servers. A complication of this model is that the 

numbers of items in the system are correlated amongst classes. If the number of class j items 

is high at a particular point in time, it is likely that the servers had a high utilisation recently, 

and so the number of class j’≠j items in the system can expected to be high as well. The 

consequences of this phenomenon on the optimisation procedure will be discussed in section 

4.3.2. 

In this chapter, we will use the approximation for the M/M/k multi-class queue as 

presented in Chapter 3. This is quite easy from a computational point of view and it gives 

accurate results for high utilisation rates. As can be seen from section 4.2, this is the most 

interesting situation. For low utilisation rates, we might as well use the M/G/∞ queue. The 

main feature of the multi-class queue is that all items of one cluster C are sharing the same 

repair facility, which has kC servers and an utilisation rate ρC. Similar to Chapter 3, we define 

the relative arrival rate ajm of item j at location m as  
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The relative deviation of the service rate of item j at location m from its cluster average is 

denoted by the variable δmj, i.e. 
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As the analysis focuses on a repair shop for a single cluster of items at a single location, 

we simplify the notation by omitting the cluster index C and the location index m. So we will 
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work with an abstract queue with k servers and utilisation rate ρ. The queue is shared by |C| 

(number of items in cluster C) items having arrival and service time characteristics aj and δj, 

respectively (j = 1,… |C|).  

To analyse the system as a Markov chain, the system state is described by two vectors w  

and s  ̧where the ith element wi of the vector w  gives the class of the ith item in queue and 

the ith element si of the vector s  gives the class of the item in service at server i (i = 1, 2, ..., 

k). This abundant state representation facilitates the solution of the equilibrium equations. 

The approximate solution is based on constructing a product form solution of the equilibrium 

equations. It first gives an approximation for the system state probabilities, and next these 

probabilities are used to approximate the necessary performance measures, such as the mean 

and the variance of the number of items in the system for each class j (E[Rj] and Var[Rj]). We 

can even approximate correlations between Ri and Rj (i ≠ j) from the state probabilities.  

The product form of the probability on system state ( ),w s  is: 
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where ( )nP s  denotes the probability on server state s  given that the total number of items in 

the system equals n. These probabilities can be calculated as shown in Chapter 3, section 3.5 

using either exact or approximate methods. Here we present the performance measures based 

on the approximate system state probabilities. 

To calculate the mean value, we have to find the sum in the following form:  
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which can be divided into two terms (R < k and R ≥ k). The first term is a finite sum of 

probability states that can be calculated directly from formula (3.13). The second term is in 

fact an infinite series of state probabilities, to be approximated by (3.14). After some algebra, 

we find the following approximation for the mean number of class i items in the system:  
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Analogously, we can approximate the second moment of the squared number of items in 

the system: 
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From the two equations above, we can find the variance using [ ] [ ]22
i i iVar R E R E R = −  . 

In Chapter 3 we have tested these approximations extensively and compared the 

approximate results to the exact results that we derived. It appeared that the approximation 

error remains within reasonable bounds (less than 10%). Besides, we observed that the 

approximation error decreases with the repair shop utilisation. The latter is relevant, because 

our method is especially meant for instances with high utilisation. 

Remark 

An interesting generalisation is to combine these results for the multi-class M/M/k queue 

with the approximate equations that Whitt (1993) developed from the relation between 

single-class M/M/k and GI/G/k systems. This approximation does not make a deep analysis of 

arrival and repair process and the only characteristics of this processes used in this 

approximation are squared coefficients of service and interarrival time variations 

( 2 2and  A Smi miC C ) of item i at location m. In this way, we arrive at the following new 

approximations for the multi-class GI/G/k queue: 
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where the characteristics of multi-class M/M/k queue as described in this section are 

substituted. This approximation still has to be tested, however. 

4.3.2 Optimisation procedure 

We will base our optimisation procedure on the VARI-METRIC method. We proceed from 

the definition of the system availability as introduced by Sherbrooke (1992): 
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and the average availability A over all systems at all downstream locations equals 
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As a consequence, maximising average availability is roughly equal to minimising the 

weighted average of expected backorders at each location.  

As noted in Chapter 2, the approximations (4.2) and (4.3) can be refined by using a 

second order approximation rather than a first order approximation. If we use that 

( ) 2( 1)1 1
2

k k kkε ε ε−
− ≈ − + , we can modify equation (4.3) as 
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If the repair shops are modelled by M/G/∞ queues, the backorders of various items are 

mutually independent. If the multiplicity of each item Zi equals one, which is not uncommon 

in practical situations (cf. Rustenburg, 2000), the second term in the first summation drops 

out. Then we only need the mean number of backorders for all assemblies at all downstream 

locations to optimise availability.  

However, the backorder distributions are not independent if they share the same repair 

facility having finite capacity. Then it is clear from formula (4.4) that we also need the 

correlations between backorders. In a multi-echelon, multi-indenture setting, these 

correlations may propagate throughout the network. For example, suppose that a central 

repair shop (say location 1) has finite capacity and repairs two different subassembly types 

(two classes), A and B. If subassembly A is part of assembly i and subassembly B is part of 

assembly j, there is theoretically a correlation between the backorders of assembly i at 

location m∈CUS(1) and the backorders of assembly j at another location m∈CUS(1). So the 

system availability at various locations (say An and Am) may be dependent. However, this is 

not an issue when calculating the average availability A as in (4.3). 

The optimisation procedure depends on the availability function and on its 

approximation. In principle, we can use the second order approximation, because the 

approximation for the multi-class M/M/k queue facilitates the computation of correlations 

between the pipeline distributions and hence also the computation of correlations between 

backorders. In Chapter 2 is shown the impact of using a second order approximation in a 

single-indenture, single-site model. Extension to general multi-indenture, multi-echelon 

models requires additional research.  

Because we will base our numerical experiments on the case of the Royal Netherlands 

Navy as introduced by Rustenburg (2000), we will use the alternative availability function 

(2.7). Therefore, our goal function for our computations in section 4.4 is defined by (2.8). 

However, we emphasise that our approach also works with other definitions of availability.  
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4.4 Computational results 

To test our model, we proceed as follows. We use the modified greedy optimisation heuristic 

as described in section 4.3 to calculate stock levels for a range of experiments. We focus on 

cluster-dedicated repair shops (modelled by multi-class, multi-server queueing systems), 

because this is a new aspect in the spare parts management literature that has not been 

examined before. Each time, we choose the budget such, that 95% system availability can be 

reached. Then, we simulate the system to estimate the true availability. Also, we approximate 

the system availability using the traditional VARI-METRIC method, assuming that the repair 

shop has infinite capacity and by plugging in the observed repair shop throughput time in the 

M/G/∞ model for the repair shop. Next, we examine to which extent the inclusion of finite 

repair capacity in the VARI-METRIC model improves the availability estimates. In this 

approach, we use the theory as sketched in section 4.3.1 for deriving first and second 

moments of backorders at the operational level. Using these two moments, we fit a discrete 

distribution and find the probability of backorders at the operational level given a stock 

distribution. These backorder probabilities are the input of the greedy algorithm of 

Sherbrooke (1992) that optimises the stock levels such, that the inventory investment to attain 

a given fixed availability (say 95%) is minimised. Here the system availability is calculated 

by (2.7). 

 In the experimental design, we focus on cases where we expect that finite capacity has 

significant impact. In section 4.2, we already showed that the impact of finite capacity 

increases with repair shop utilisation and decreases with the number of servers. Therefore, we 

choose relatively high repair shop utilisation in our experimental design (≥0.8). We vary the 

following system characteristics: indenture structure, echelon structure, system failure rate, 

number of servers and repair shop utilisation rate. Altogether, we have 5 experimental 

factors. We will define two values for each factor and we will include all parameter 

combinations in our experimental design, resulting in 25 = 32 experiments. 

We use the system structure and the indenture structure as shown in Figure 4.2, where 

numbers display probabilities to be sent to higher echelon repair rep
mjp  and the cause 

probabilities cause
mjkp . For simplicity, these probabilities are the same throughout the whole 

system.  

We include both a 2-echelon and a 3-echelon system in our numerical experiments. 

Figure 4.2 shows that the 3-echelon system consists of 1 central depot, 4 frigates and 16 

submarines. The 2-echelon system does not have an intermediate frigate-level and simply 
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consists of the depot and 16 submarines. Similarly, we analyse a 3-indenture system as shown 

in Figure 4.2 and the corresponding 2-indenture system that arises when the lowest indenture 

level is omitted. 
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Figure 4.2. An example of a supply system and an item hierarchy 

 

The installed base consists of one pump A and one pump B per submarine. We fix the 

failure rate of pump B in all experiments and vary the failure rate of pump A as shown in 

Table 4.1.  

 

Table 4.1. Values for the failure rates in the experiments (mean number of failures per 

pump per year) 

Notation Pump A Pump B 

Low 10 15 

High 19 15 

 

All locations have finite capacity cluster-dedicated repair shops. As clusters, we take all 

items at the same indenture level. That is, each location has two respectively three (multi-

class, multi server) repair shops in the two- respectively three-indenture model. One repair 

shop is dedicated to pump A and pump B, one repair shop is dedicated to the valve, the piston 

and the flange and the third repair shop (only in the 3-indenture model) is dedicated to the 

other items. 

Next, we have to specify the repair shop parameters, namely the mean repair times and 

the number of servers per repair shop. We choose these parameters such, that the utilisation 
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rates of all repair shops equal 80% and 95%, respectively. For the numbers of servers we 

define two different sets with 10 servers at each repair shop and with 3 servers, and repair 

times are defined completely by these parameters (arrival rates, utilisation rates and number 

of servers).  

 

Table 4.2. Varying parameters of experiments 

Echelons Indentures Failure rates Number of servers 
per repair shop 

Utilisation 
rates 

Three Three Low  3 80% 

Two Two High 10 95% 

 

All parameter combinations (Table 4.2) lead to 25 = 32 experiments. As mentioned above, 

we used our optimisation program to calculate the 32 different stock levels sets, which 

guarantee 95% system availability. Next, we estimated the true availability using discrete 

event simulation. The results of simulation runs (availability estimates with half lengths of 

the 95% confidence intervals) are given below. 
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Table 4.3. Results of the approximation program and the simulation runs  

Echelons Indentures # servers Arrival 
rates 

Utilisation 
Rates 

Finite 
capacity.

Simulation  ∞  capacity 
approximation

80% 95.03% 93.9%±0.39 99.89% 
Low 

95% 95.01% 97.0%±0.23 100.00% 

80% 95.06% 94.8%±0.29 99.92% 
3 

High 
95% 95.01% 97.1%±0.64 100.00% 

80% 95.03% 95.4%±0.37 99.10% 
Low 

95% 95.01% 96.9%±0.53 100.00% 

80% 95.00% 94.2%±0.43 99.14% 

Three 
indentures 

10 
High 

95% 95.00% 96.9%±0.45 100.00% 

80% 95.02% 94.6%±0.33 99.91% 
Low 

95% 95.01% 95.9%±0.42 100.00% 

80% 95.01% 95.9%±0.71 99.86% 
3 

High 
95% 95.01% 96.5%±0.47 100.00% 

80% 95.00% 94.9%±0.52 99.33% 
Low 

95% 95.01% 95.7%±0.48 100.00% 

80% 95.00% 95.2%±0.51 99.24% 

Three 
echelons 

Two 
indentures 

10 
High 

95% 95.01% 96.1%±0.54 100.00% 

80% 95.05% 94.1%±0.37 99.91% 
Low 

95% 95.01% 95.3%±0.52 100.00% 

80% 95.05% 95.0%±0.51 99.92% 
3 

High 
95% 95.01% 96.9%±0.41 100.00% 

80% 95.01% 94.0%±0.50 99.92% 
Low 

95% 95.01% 94.8%±0.51 100.00% 

80% 95.05% 95.3%±0.45 99.91% 

 
Three 
indentures 

10 
High 

95% 95.02% 96.2%±0.43 100.00% 

80% 95.03% 95.3%±0.35 99.90% 
Low 

95% 95.01% 96.2%±0.56 100.00% 

80% 95.03% 94.3%±0.28 99.88% 
3 

High 
95% 95.01% 96.0%±0.51 100.00% 

80% 95.02% 94.7%±0.42 99.37% 
Low 

95% 95.01% 93.5%±0.51 100.00% 

80% 95.00% 95.3%±0.45 99.24% 

 
Two  
Echelons 

Two 
indentures 

10 
High 

95% 95.01% 96.2%±0.63 100.00% 
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It is clear that including the finite capacity of the repair shops leads to better results. The 

average deviation between simulation and the finite capacity approximation is 0.9%, whereas 

the average error is 4.8% if the infinite capacity assumption is used. Hence, the inclusion of 

finite repair capacity improves the approximation accuracy by a factor 5 on average.  

To analyse these results in more detail, we examine how this approximation error depends 

on the five factors in our experimental design, see Table 4.4. The ordering of the factor levels 

in this table corresponds to Table 4.2. 

 

Table 4.4. Average errors for all experiments and for different subsets of experiments. 

Average 
error 

Echelons Indentures Failure rates Number of 
servers 

Utilisation rates

“3”- 1.01% “3”-1.02% “Low”- 0.83% “3 set”- 0.97% “80%” - 0.50% 
0.89% 

“2”- 0.77% “2”-0.77% “High”- 0.96% “10 set”- 0.81% “95%” - 1.28% 

 

This table shows us that the utilisation rates have the strongest effect on the 

approximation error. The experiments with 80% percent utilisation rate have a smaller 

approximation error than the experiments with 95% utilisation rate.  

Repeating the same analysis for the VARI-METRIC method (see Table 4.5), we see that 

the average approximation error is considerably higher for all subsets of the experiments.  

 

Table 4.5. Average errors for the same set of experiments when the availability is 

estimated with the assumption of infinite repair capacity2. 

Average 
error 

Echelons Indentures Failure rates Number of 

servers 
Utilisation rates

“3”- 4.76% “3”- 4.83% “Low”- 4.82% “3 set”- 4.93% “80%” - 4.63% 
4.81% 

“2”- 4.86% “2”- 4.78% “High”- 4.80% “10 set”- 4.69% “95%” - 4.99% 

 

 

                                                 
2 In fact, we calculate the mean number of items in repair using formulas of the multi-server 
queue, but we set the variance of this number equal to the mean. 
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Table 4 shows that the utilisation of the repair facilities has the highest impact on the 

approximation error.  

To examine it in detail, we have run an additional set of experiments for two-echelon, 

two indenture systems. Here the failure rates are fixed to 15 (19) for Pump A (Pump B) and 

the numbers of servers to 3. The other parameters are defined by the repair and cause 

probabilities shown in Figure 4.2 and by the utilisation rates of the repair shops, which we 

vary from 0.4 to 0.95. The stock levels are optimised to a 95% availability level using our 

modification of the VARI-METRIC method. 

In the next figure (Figure 4.3), we show the values of the system availability estimated 

by the classical VARI-METRIC method, by the modified VARI-METRIC method and by 

simulation. 
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Figure 4.3 Comparison of system availabilities obtained by different approximations. 

 

It is clear from this picture that the classical VARI-METRIC method significantly 

overestimates the system availability and, therefore, it underestimates the required stock 

levels. The modified VARI-METRIC method produces much better results if the utilisation 

of repair shops is not too high, say less than 0.85. The deviation for high utilisation rates is 

probably caused by backorder correlations that we ignored (see section 3.7.3). We can also 

see that the modified VARI-METRIC method underestimates the system availability for high 

utilisations, thereby guaranteeing that the target availability will be reached. 

We stress that our results are valid only within our experimental range. As we already 

showed in section 4.2, the impact of the infinite capacity assumption is high if the repair shop 

utilisation is high, especially if the number of repair men in the shop is low (Figure 4.1). 
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Some side experiments showed that the infinite capacity model is appropriate indeed if the 

utilisation is low, especially if the number of servers is not too small. For example, the 

average error when using the infinite capacity assumption reduces to 1.5% if the utilisation 

equals 60% and the repair shop has 10 servers.  

Heavy utilisation also leads to long queues and hence the simulation model requires 

more time to stabilise. In our experiments we have found that a simulation model of a single 

queue needs around 2000 subruns with 1000 arrivals each to arrive at 10%-errors in 

estimation of mean number of items in queue. The fraction of failed items that are repaired at 

the lowest indenture repair shops is determined by the parameters rep
mjp . In our three-echelon 

model, we find that this fraction equals 0.2*0.2*0.2 = 0.008 (or 0.04 in case of two-echelon 

models). A rough estimate of the simulation run length required for three-echelon models 

yields that we need 2000 (subruns) * 1000 (item failures per subrun)/0.008 = 250,000,000 

failures at each submarine for each model (out of 32 models). We could not make such long 

runs and we stopped the simulations after 50,000 - 60,000 failures at each submarine. 

However, the errors in the system availability are within reasonable bounds. It shows that the 

errors in estimation of lowest indenture repair shops performance have only a limited impact 

on the estimation of the system performance. On the other hand, we see that the high 

utilisation of repair facilities can destabilise the system. Despite the limit on the number of 

submarine failures, we still needed up to 200 hours for a single simulation run in some cases 

(3-echelon models). Although this is long, it is still manageable if the number of experiments 

is not too high as we did (32 experiments). 

These experiments also show us that the stock levels at lowest echelon must be high to 

attain the target availability level (cf. Table 4.6). As a result, it can be cheaper to increase the 

capacity of the repair facilities then to keep many spare parts in stock. Hence, the 

optimisation of the availability with finite capacity repair shops can include a trade-off 

between stocks and servers capacities. A formal method for this trade-off still has to be 

developed. We will come back to this issue in Chapter 5. 
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Table 4.6. Optimal stock levels at each location of a three-echelon three-indenture 

model with 10 servers and “high” failures rate using the finite capacity model. 
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1st echelon 2 3 7 13 16 4 4 5 7 

2nd echelon 3 5 6 12 16 4 3 4 6 80% 

3rd echelon 12 13 8 15 19 5 4 5 7 

1st echelon 5 5 21 35 47 11 7 19 18 

2nd echelon 7 7 20 33 45 8 6 16 16 95% 

3rd echelon 49 42 27 43 63 14 8 21 20 

 

Another interesting question is whether the use of our model with finite capacities leads 

to significantly different decisions than the traditional infinite capacity model. Therefore, we 

compared the stock allocations using both models. As an example, we show in Table 4.7 the 

stock allocation based on the traditional infinite capacity model for the same cases as in Table 

4.6. As throughput times in the infinite capacity repair shops, we used the throughput times 

corresponding to repair shops with 10 servers and an utilisation of 80% and 95% in the finite 

capacity model, respectively.  

Table 4.7. Optimal stock levels at each location of three-echelon three-indenture model 

with “high” failure rates using the infinite capacity model; the mean repair throughput 

times are equal to finite capacity repair shops with 10 servers and a utilisation of 80% 

and 95%, respectively. 
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1st echelon 3 4 6 12 15 4 4 4 6 
2nd echelon 4 6 6 11 14 3 3 3 6 

Equal to repair 
shop with 10 
servers and 80% 
utilisation 3rd echelon 9 11 7 13 16 4 4 4 7 

1st echelon 10 10 14 23 35 10 6 11 13 
2nd echelon 13 13 14 23 34 9 6 10 12 

Equal to repair 
shop with 10 
servers and 95% 
utilisation 3rd echelon 22 22 15 25 37 11 7 11 13 
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The shifts in stock allocation as shown in both tables are representative for our 

experiments. We see that decisions are modified in the following direction: 

1. The total number of items on stock is considerable higher using the finite capacity 

model. As we also see from Table 4.3, the infinite capacity model overestimates the 

real system availability. Therefore, the model suggests to put considerably less items 

on stock than actually required to reach the target availability.  

2. Using the finite capacity model, a somewhat larger fraction of the stocks is allocated 

to the downstream locations.  

3. There is no clear shift in stock distribution over indenture levels. That is, the 

distribution of stocks over first, second and third indenture is approximately similar 

for both the finite and infinite capacity model in our experiments. 

4.5 Conclusions 

In this chapter, we studied multi-echelon, multi-indenture service parts supply systems with 

finite repair capacity. We considered both item-dedicated repair shops, modelled by M/M/k 

queueing systems, and cluster-dedicated repair shops, modelled by multi-class M/M/k 

queueing systems. Our finite capacity VARI-METRIC approach yields more accurate results 

than the traditional approach of modelling repair shop throughput times by M/G/∞ queues if 

the utilisation is high (say > 0.7), and especially if the number of servers is low (say < 4). In 

our numerical experiments, we found that the average absolute deviation between estimated 

and simulated availability is only 0.9% using our method whereas this average deviation is 

4.8 % if we use the traditional infinite capacity VARI-METRIC approach. The VARI-

METRIC approach generally overestimates the system availability. Herewith, we answered 

research question 3 from Chapter 1 

Regarding the spare part stocks distribution within the system, we see that our finite 

capacity model leads to some shift in stock distribution to downstream locations. The 

distribution over the indenture levels is hardly affected, however.  

We note that our conclusions are only valid within our experimental range, i.e. if the 

repair shop utilisation is relatively high. Naturally, our finite capacity model converges to the 

traditional infinite capacity approach if the utilisation decreases. Therefore, our approach is 

especially useful for practical situations in which (some of) the repair shops have a high work 

load of urgent repair jobs. Obviously, there are also cases where the traditional infinite 

capacity model is sufficient. This is true if outsourcing of repair jobs against little additional 

costs and lead time is possible or if the repair shop has low priority jobs (e.g. preventive 
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maintenance or special projects) causing that the utilisation for high priority repair jobs is 

relatively low. 

Furthermore, our method facilitates what-if analysis with important design parameters as 

the number of servers in the repair shops and the assignment of items to repair shop clusters. 

Another topic is refining the finite capacity model for the repair shop to multi-class, multi-

server priority systems. Such a model enables us to improve further on the system efficiency. 

We will elaborate on the latter issues in Chapter 8. Such analysis is not possible for sure using 

the traditional infinite capacity VARI-METRIC approach. 

 

 



   

Chapter 5 

 Trade-off between inventory and repair capacity  

in spare part networks 

Abstract 

 
The availability of repairable technical systems depends on the availability of (repairable) 

spare parts, to be influenced by (1) inventory levels and (2) repair capacity. In this chapter, 

we present a procedure for simultaneous optimisation of these two factors. Our method is 

based on a modification of the well-known VARI-METRIC procedure for determining near-

optimal spare part inventory levels and results for multi-class, multi-server queueing 

systems, representing repair shops. The modification is required to avoid non-convexity 

problems in the optimisation procedure. To include part time and overtime working, we 

allow for a non-integer repair capacity. To this end, we develop a simple approximation for 

queueing systems with a non-integer number of servers. Our computational experiments 

show that the optimal utilisation rate of the repair servers is usually high (0.80-0.98) and 

depends mainly on the relative price of the servers compared with inventory items. Further, 

the size of the repair shop (the minimal number of servers required for a stable system) plays 

its part. We also show that our optimisation procedure is robust for the choice of the step size 

for the server capacity. The obtained results answer research question 4 (Chapter 1). 
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This chapter is based on the paper: 

“A trade-off between inventory and repair capacity in spare part networks.” A. Sleptchenko, M.C. van 
der Heijden, A. van Harten, accepted for publication in Journal of Operational Research Society. 
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5.1 Introduction 

Timely supply of spare parts is essential to attain a high system availability. This can be 

achieved by holding sufficient stock and/or minimising the repair shop throughput times. This 

provides us with a trade-off between spare part inventories and repair capacity: we can 

improve the system availability by (1) increasing spare part inventories to buffer against 

repair shop throughput times, and by (2) investing in additional repair capacity, thereby 

reducing the number of items waiting for repair and thus inventory requirements. So, an 

optimal investment allocation to both spare part inventories and repair capacity is needed for 

an efficient system operation. 

The number of decision variables in such an optimisation problem may be very large. 

Stock levels have to be determined for each item in the product hierarchy and for each 

stocking location. Also, the number of servers per repair shop has to be chosen. In principle, 

each location in the multi-echelon structure may have one or more repair shops, each having 

the ability to carry out some specific repair jobs. A repair shop may be generic (able to carry 

out all repair jobs for all items) or dedicated to a specific set of items and repair jobs. In this 

chapter, we assume that the number and type of repair shops are given. A location may have 

one or more repair shops, each being dedicated to a fixed but different set of items. Such 

repair shops are modelled by multi-class, multi-server queueing systems (cf. Chapter 3). We 

aim to find the optimal values of the decision variables spare part stock levels (for each item 

and each location) and repair capacities (for each repair shop ant each location). We consider 

two variants of our optimisation problem: 

(i) maximise the average availability of all field systems given a fixed investment budget 

for spare part inventories and repair capacities; 

(ii) minimise the investment budget for parts and repair capacity given a target value for 

the system availability; 

To our knowledge, analytical models for the trade-off between spare part inventories and 

repair capacity are not available in literature. Our contribution is two-fold. Firstly, we will 

present an extension of VARI-METRIC facilitating the simultaneous optimisation of 

inventories and repair capacity. This method is useful for companies to judge whether they 

can better spend their budget to additional repair capacity (thereby reducing repair throughput 

times) or to additional spare parts (thereby buffering against long repair throughput times). 

Second, our method provides us the opportunity to gain insight in the appropriate repair shop 
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utilisation and the allocation of budget to spare parts and repair capacity (see section 5.4). 

Note that our algorithm does not lead to an optimal solution, although the analysis of the 

M/M/k multi-class queue that we use is exact. Even the case infinite repair shops is already 

that complex, that optimal stock levels cannot be guaranteed using VARI-METRIC, except 

for some special cases.  

In the next section, we give details on our model. In section 5.3, we present our 

optimisation procedure. Numerical experiments and their results are the subject of section 5.4. 

Our conclusions follow in section 5.5. 

5.2 The model 

In this section, we describe the basics of VARI-METRIC (5.2.1) and the issues when 

optimising repair capacity and spare part inventories simultaneously (5.2.2). 

5.2.1 The VARI-METRIC-approach for inventory optimisation 

Additionally to the general notation as introduced in Chapter 2 we will use the following 

notation: 

k  =  the matrix of capacities with elements lmk , denoting the number of servers in 

repair shop l at location m. 

stock
jc   = the price of item j.  

cap
lmc  = the price of one server in repair shop l at location m. 

( ),mjPL st k   = the number of type j items in the pipeline at the location m, i.e. all items j under 

repair at location m, waiting for subassembly replacement or on order at the 

supplier of location m. 

( ),mjBO st k  = the number of backorders (unfilled demand) for item j at location m. 

VARI-METRIC focuses on maximising the average availability of the installed base 

using a fixed budget by allocating spare part stocks, assuming infinite capacity repair shops. 

Sherbrooke (1992) shows that this objective is approximately equivalent to minimising the 

sum of the expected backorders of all highest indenture items at all downstream locations. 

Rustenburg et al. (2001) show that under certain conditions the availability function can be 

expressed in the backorder probabilities rather than the expected backorders. This is the case 
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if each base serves one system and if each item type occurs only once in each system. Then, 

maximising the average system availability is exactly equivalent to minimising the sum of 

backorder probabilities and the objective function is: 

 

( ) ( )
(1)( )

, , 0
ech
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j INDm ECH N

F st k P BO st k
∈∈

 = > ∑ ∑  (5.1) 

 

where the repair shop capacities k are traditionally infinite. In general, the optimisation 

algorithms of the VARI-METRIC class can be used for both types of objective functions (sum 

of backorder probabilities and sum of expected backorders). We will refer to model variants 

(i) and (ii), as stated in Chapter 2, for Sherbrooke’s objective function and to model variants 

(i)’ and (ii)’ for Rustenburg’s object function. Note that the number of backorders is related to 

the number of items in the pipeline by the following equation: 

 

( ) ( ){ }, max , ,0mj mj mjBO st k PL st k st= −   (5.2) 

 

Sherbrooke (1992) shows how for infinite capacity repair shops the first two moments of 

the number of items in the pipeline PLmj can be calculated from demand, repair and order time 

characteristics. We refer to Chapter 2 for mathematical details. 

Based on the equations for the pipeline and backorder characteristics, VARI-METRIC 

uses a greedy algorithm to optimise item stock levels within a budget constraint. The idea is 

very simple: in each iteration we add an item j* to stock at location m*, such that we get a 

maximum decrease in backorder probabilities (and thus a maximum increase of availability) 

per unit of money spent. Let us denote: 
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where ejm is a zero-matrix having only element (j, m) equal to 1. Then we choose for (j*, m*) 

maximising jm∆ . Rustenburg et al. (2001) show that nonnegative starting values for the stock 

levels are required in order to avoid non-convexity problems in the greedy algorithm. They 

recommend certain starting values for two-echelon models and infinite repair capacity. We 
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have to reconsider these starting values since we also have to set the repair shop capacities 

initially. We will return on this issue in section 5.3.2. 

5.2.2 Issues for the inventory-capacity trade-off 

To be able to optimise stock levels and repair shop capacities simultaneously, we need prices 

for repair capacity to compare to spare part prices. As spare parts are purchased and can 

circulate through the system during many years, we should calculate such a kind of 

“purchasing price” for repair men keeping this in mind. In other words, we should use the net 

present value of all the expenditures for a repair man in the next, say, 5 years. These 

expenditures include wages, taxes and social premiums, housing, education, tools. etc. As a 

consequence, the “price” of a full-time server in a repair shop may be very high, say around 

500,000 Euro. Because of the high price of repair capacity, one might consider repair shops 

with a non-integer number of servers. Such a number, say 4.5, may represent various practical 

intermediate solutions, such as: 

• using overtime or flexible labour contracts; for example, 4 servers each working 9 hours 

per day instead of 8 lead effectively to a repair shop with 4.5 servers (4x9 = 4.5x8); as 

repair jobs usually take multiple days, one might also model this case as a repair shop with 

4 servers working 12.5% faster. 

• contracting part-time personnel; then, 4.5 represents an alternating process between 4 and 

5 servers (e.g. only 5 servers on Tuesday, Wednesday morning and Thursday); part time 

working can also imply that 5 servers work 7.2 hours per day each (10% less than 8 

hours), which can be modelled as a repair shop with 5 full-time servers each working 10% 

slower. 

• outsourcing some repair jobs or hiring external repair men; then the repair capacity is an 

alternating process between 4 and 5 (or even 6) servers, but the actual capacity depends on 

work load; also, the price of outsourcing or hiring may be different from own personnel;  

We see that repair shops with a non-integer number of servers may have various practical 

interpretations. In fact, each interpretation requires its own model. Of course, this is hard to 

include in an integral optimisation framework. Therefore, we prefer to use a relatively simple 

model. We will go into more detail on the exact modelling of repair shops having a non-

integer number of servers in the next section. Thereby, we assume that the price per server is 

fixed for each repair shop (but the price may vary between repair shops). 
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5.3 Simultaneous inventory and repair capacity optimisation 

5.3.1 Repair shops with a non-integer number of servers 

For a VARI-METRIC-like optimisation procedure, we need to calculate the first two 

moments of the distribution of the number of items in each repair shop. For an integer number 

of servers, we can use the results for the M/M/k multi-class queue as described in Chapter 3. 

When the number of servers is not an integer, various modelling options can be considered. 

Two options have already been mentioned in the previous section: [1] round the number down 

to the nearest integer and assume that these servers work somewhat faster (modelling 

overtime), and [2] round the number up to the nearest integer and assume that these servers 

work somewhat slower (modelling part time work). Both options are relatively easy to 

analyse, but yield different results for the distribution of the number of items in the system 

(and hence for the mean number of backorders).  

A variant on option [2] is to use server dependent repair times, where one or more servers 

work at a slower speed than others. Although such a model is not difficult to analyse and can 

be found as an exercise in a queueing theory course (Adan, 2000), it leads to significant 

computational effort. It is necessary to compute repair shop characteristics (and consequently 

the availability of the whole system) each time when we make a slight modification of the 

repair shop capacities.  

Finally, we can use some interpolation procedure proceeding from the performance 

characteristics of queueing systems with an integer number of servers. However, we found 

that the interpolation function has to be selected carefully. If not, the goal function is not 

convex anymore and a greedy optimisation procedure may end up in a local optimum that is 

considerably worse than the global optimum. Another issue is that interpolation only is not 

sufficient, but extrapolation is required as well. For example, suppose that the smallest integer 

number of servers possible in a repair shop equals 2 and that the utilisation equals 0.6. Then it 

is possible that the optimum number of servers in this repair shop equals some smaller 

number, for example 1.5 servers having utilisation 0.8. It is well-known that extrapolation 

may lead to serious approximation errors. 

Therefore, we chose to combine option [1] and [2]: a non-integer number of servers k is 

represented by a weighed average of  
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1. a repair shop with k servers, each working at a faster rate such that utilisation is the 

same, and 

2. a repair shop with k servers, each working at a slower rate such that utilisation is the 

same. 

For the backorder calculations, we need first two moments of the number of items in the 

queueing system R. So, we use the following approximations: 
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where “fast” and “slow” denote the system characteristics of the approximations 1 and 2 

respectively.  
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Figure 5.1. Approximation for the mean number of items in a system with a fractional 

number of servers 

In Figure 5.1, we present the behaviour of the approximation. We take λE[S] = 1.96 and vary 

the number of servers from 2 to 8 (equivalent to a utilisation rate between 0.98 and 0.245). 

The figure shows that the mean number of items in the system is higher for a repair shop with 

“fast” servers than for a repair shop with “slow” servers (having the same utilisation). A 

similar phenomenon applies to the variance. As approximation (5.4) provides a smooth curve 

between two reasonable bounds, we chose to use this approximation for our optimisation. 
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5.3.2 Optimisation procedure 

As mentioned in the introduction, we consider three variants of the optimisation problem. We 

will use variant A, maximise the availability given a fixed budget, to explain how the 

procedure works in general. Next, we will discuss how we can use similar procedures to deal 

with the other two variants. 

In principle, we can extend the marginal (local search) VARI-METRIC algorithm in a 

straightforward way. Now additional system availability can not only be obtained by 

increasing the spare part inventory levels at a certain location, but also by increasing repair 

shop capacity. Therefore, we need a second set of marginal values for the repair shop 

capacity, next to the marginal values for the stock level * *
stock
j m

∆  as defined by (5.3): 

 

( ) ( ), , lmcap
lm cap

lm

F st k F st k d

cε

− +
∆ =  (5.5) 

 

where lmd  is a zero-matrix having only element (l, m) equal to ε (0 < ε ≤ 1). Here ε denotes a 

certain (non-integer) step size for the server capacity. In each step of the greedy algorithm, we 

search the maximum value of all * * * * and stock cap
j m l m

∆ ∆  over all locations m, repair shops l and items 

j. Depending on the maximum, either the corresponding stock level or the corresponding 

repair capacity is increased. We continue the iterations until the given budget has been used, 

or until the target system availability has been reached. 

Still, the step size for the (non-integer) number of servers ε and the starting values { },st k  

of the algorithm have to be defined. It is reasonable to define the step size such, that the price 

of a fractional server has the same magnitude as an item (i.e. either the most expensive or the 

cheapest spare part). As this still allows for a wide range of values for ε, we will examine the 

sensitivity of our algorithms’ solution to the step size ε in section 5.4.  

As starting values for the matrix st , the equations of Rustenburg et al. (2001) cannot be 

used, because these equations depend on the repair shop throughput times. If the capacity is 

finite but unknown (because it is a decision variable), these throughput times are not known in 

advance. Therefore, we modified Rustenburg’s equation by assuming that the number of 

servers coincides with a low utilisation of 0.4. However, we found that this may still leave us 

with serious non-convexity problems, especially if the system availability is low. In Figure 
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5.2, we show the average availability as function of the budget used during the optimisation 

procedure for a case in which we encountered problems (“Classical VARI-METRIC”). The 

availability function shows many ‘jumps’ at several values of the budget. This is caused by 

the fact that stock levels and server capacities are not balanced over various locations during 

the algorithm. In contrary, first one location (e.g. submarine) receives a lot of stock and server 

capacity, then the algorithm moves to the next (identical) location.  
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Figure 5.2. Misbehaviour of the greedy optimisation procedure and the impact of 

availability balancing 

 

To solve these problems, we may consider the following solutions: 

1. Use higher starting values for the number of servers and for the stock levels. However, we 

need less stock if we have more servers and the other way round. As a consequence, we 

have to deal with a trade-off between repair shop capacity and stock levels during the 

initialisation. It shifts the problem to the initialisation and it is not straightforward how to 

solve this. 

2. Use a look-ahead heuristic by calculating the reduction in backorder probabilities for two 

or more sequential steps and select the best option. A drawback is that the number of 

function evaluations increases drastically, whereas it is not sure whether non-convexity 

will be avoided. 

3. Balance the availability of all systems in the installed base during the optimisation 

procedure. 

Because of the drawbacks of the first two options, we chose to select option 3. Balancing 

availabilities can be achieved in the following way. If it is best to add an item to stock on one 

location, we add the same item to stock on all equivalent locations in the other branches of the 
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network. For example, if we add one item to Submarine 1, only the availability of the 

installed base (Pump A and/or Pump B) at submarine 1 will be improved to a certain level. 

Then we add the same item to stock at the other submarines, insofar the availability of the 

pumps at those submarines does not surpass the availability at Submarine 1. In a perfectly 

balanced case (same demand and repair characteristics for all branches in the multi-echelon 

network), we always add one item to stock at all equivalent locations (submarines or supply 

ships). Similarly, we balance the repair shop capacities in equivalent repair shops throughout 

the network. This will avoid the problems as shown in Figure 5.2, but it has the drawback that 

we use more budget in each iteration. This is a problem if we approach our budget limit, but it 

can easily be resolved by implementing the final decision partially or by moving to the 

traditional one-by-one heuristic. The latter is possible, because most serious problems with 

the function behaviour occur if the average system availability is very low.  

The dashed line in Figure 5.2 shows that our modification leads to a better optimisation 

procedure and solution indeed. For this specific case, we found a cost reduction of 10% while 

attaining the same availability of 95%. Besides, our modified greedy algorithm is 

considerably faster, because multiple stock levels or repair shop capacities may be increased 

in a single iteration. Still it is true that the problems as shown in Figure 5.2 only occur in a 

part of the cases. Also, we found that such problems mainly occurred with the sum of 

backorder probabilities as objective function as suggested by Rustenburg (2000). We did not 

find problems with the sum of expected backorders as objective function as suggested by 

Sherbrooke (1992).  

Because we chose to use availability balancing as described above, we can simply set 

zero stock levels and a minimal number of servers as initialisation. To prevent numerical 

problems arising from extremely high utilisation rates, we set the numbers of servers k  

initially such that the utilisation equals 0.98. Now we can summarise our optimisation 

heuristic as follows: 
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Algorithm: Stock/capacity trade-off optimisation 

Step 1. Set the initial stocks levels to zero and the initial numbers of servers as small as 

possible guaranteeing a utilisation of 0.98. Set the budget spent Ĉ equal to total costs of 

the initial repair shop capacities. 

Step 2. Calculate * * * * and stock cap
j m l m

∆ ∆ for all stocks and servers according to (5.3) and (5.5), using 

(5.4). 

Step 3. Determine the maximum of the increments * * * * and stock cap
j m l m

∆ ∆  over all l, j and m.  

If * * * * > stock cap
j m l m

∆ ∆ , then go to Step 4, else go to Step 5. 

Step 4. Set the marginal costs of the best improvement equal to *
stock
j

c .  

If *
ˆ  budgetstock

j
C c+ ≤ , then 

 * * * * *
ˆ ˆ: 1;   :  stock

j m j m j
st st C C c= + = +   

Set *( )PBO m  := sum of backorder probabilities for the installed base in the subtree 

of location m* 

Let n be the echelon of location m*;  

For all other locations ( )m ECH n∈  and while *
ˆ budgetstock

j
C c+ ≤  do 

while *( ) ( )PBO m PBO m≤  do * * *
ˆ ˆ: 1;   :  stock

j m j m j
st st C C c= + = +   

Go to Step 6. 

Step 5. Set the marginal costs of the best improvement equal to * *
cap
l m

cε .  

If * *
ˆ  budgetcap

l m
C cε+ ≤ , then 

 * * * * * *
ˆ ˆ: ;   :  cap

l m l m l m
k k C C cε ε= + = +  Calculate *( )PBO m ; Let n be the echelon of location 

m*.  

For all other locations ( )m ECH n∈  and equivalent repair shops l and while 

ˆ  budgetcap
lmC cε+ ≤  do 

while *( ) ( )PBO m PBO m≤  do ˆ ˆ: ;   :  cap
lm lm lmk k C C cε ε= + = +   

Recalculate the repair shop characteristics using (5.4) 

Step 6. If ˆ budgetC < , then go to Step 2, else STOP 
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Note that the balancing of availability as discussed before takes place in the inner loops at 

the end of step 4 and step 5. Recall that this algorithm solves problem variant (i)’ from the 

Chapter 2. In a similar way, we can define an algorithm for variant (ii)’: minimise the budget 

for parts and repair capacity given a target availability. Then, we should only modify the stop 

criterion in step 4, 5 and 6. Instead of the budget restriction, we use a restriction on the 

average system availability ( ) ( )1
( )

( )

, ,ech
ech

mECH N
m ECH N

A st k A st k
∈

= ∑ . Here we denote the 

availability at location m by ( ) ( )
(1)

, , 0m mj
j IND

A st k P BO st k
∈

 = = ∏ . Now the stop criterion in 

step 6 (and similarly in step 4 and 5) becomes: 
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5.4 Computational results 

In this section we discuss some numerical experiments using our algorithm with the following 

goals: 

1. obtaining indications for optimal repair shop utilisation rates, 

2. examining the sensitivity of the results to the pricing of servers, 

3. examining the impact of the step size for the (non-integer) repair shop capacity on the 

optimisation. 

5.4.1 Experimental design 

We choose Variant (i)’ of our algorithm in all our experiments. Our experimental design is 

derived from the one presented in Chapter 4. We consider six experimental factors: indenture 

structure, echelon structure, system failure rate, minimal number of servers, price of servers, 

and size of server step. The network and indenture structure are shown in Figure 5.3.  
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Figure 5.3. An example of a supply system and an item hierarchy 

 

The echelon structure as experimental factor means that we consider both a 2-echelon 

and a 3-echelon system as shown in Figure 5.3. The 2-echelon system does not have an 

intermediate supply ship level, only the depot and 16 submarines. Similarly, for the indenture 

structure as an experimental factor we consider a 3-indenture system as shown in Figure 5.3 

and the corresponding 2-indenture system that arises when the lowest indenture level is 

omitted. The installed base consists of one pump A and one pump B per submarine. The 

failure rate scenarios are given in Table 5.1: We fix the failure rate of pump B in all 

experiments and vary the failure rate of pump A.  

 

Table 5.1. Values for the failure rates in the experiments (mean number of failures per 

pump per year) 

Notation Pump A Pump B 

Low 10 15 

High 19 15 
 

A repair shop is able to handle a given set of items. In our experiments, we assume that all 

items having the same indenture level are assigned to the same repair shop. That is, each 

location has two or three repair shops, depending on the scenario for the indenture structure. 

Referring to Figure 5.3, we see that the number of product classes in a repair shop equals 2 

(system level), 3 (assembly level) and 4 (subassembly level). Further, the repair shop 

parameters are defined by the minimal number of servers, the arrival rate of failed parts and 

the repair times. For the minimum number of servers we consider two cases with either 2 

servers or 10 servers per repair shop. We chose the mean repair times such, that the utilisation 

rate for the minimal number of servers equals 0.98. Although the number of servers is one of 
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the optimisation parameters, the minimal possible number of servers defines in this way the 

sensitivity of the server utilisation to the number of servers, therefore it plays an important 

role in the optimisation procedure. 

The price of a server is important if considered as a relative value compared to the item 

prices as shown in Table 5.2. In our experiments, the price of a server equals either 10 times 

or 100 times the price of the most expensive item. Referring to Table 5.2, we see that the 

server price varies as 71,000 and 710,000 euro. 

 

Table 5.2. Item prices 

Pump A Pump B Valve Flange Piston Stem Gasket Rod Ring 

5000 7100 200 300 500 120 60 50 80 
 

We vary the server step size ε as well, as a choice has to be made between adding one 

item to stock and increasing server capacity of one repair shop by ε in each iteration of the 

algorithm. The required computation time of our algorithm depends on the step size. As an 

indication, we found in our experiments that the computation time varied between 2 minutes 

and 5 hours on a Pentium III 800 MHz PC for step size ε = 0.1, whereas for step size ε = 

0.003 our algorithm took three times more time on average. The three - echelon, three - 

indenture systems take the most time. Of course, we deal with a tactical decision that is taken 

only a few times per year, so that computation times are less relevant. Still, a step size that is 

too small may cause that practical problems with thousands of parts cannot be solved 

anymore.  

To examine the impact of the step size, we set the step size such, that the value of ε 

additional servers equals the price of the cheapest item and the price of the most expensive 

item, respectively. Depending on the scenario for the server price, this implies that the value 

of ε varies between 0.00007 and 0.1. To avoid excessive computation times because of 

extremely small and practically useless step sizes, we take ε = 0.003 as a lower bound.  

In the next table, we summarise all parameter settings. 
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Table 5.3. Varying parameters of experiments 

Echelons Indentures Failure 
rates 

Minimal number of 
servers per repair shop 

Price of a server 

Price of an item 
Server steps 

Two Two Low 2 10 ~ cheapest item 

Three Three High 10 100 ~ most expensive item 

 

5.4.2 Results 

The large amount of experiments and their extensive results (tables of the optimal stock and 

server allocation) does not allow us to present all details here. Therefore, we will only show 

the key performance characteristics.  

 

Table 5.4. Average utilisation rates of repair servers in the system for different 

parameters 

Experimental 
factor Echelons Indentures Failure rate 

Pump A  
Minimal number of 
servers per repair shop

Quotient of 
server price and 
item price 

Server 
steps 

Low/high value 2, 3 2, 3 10, 19 2, 10 10, 100 0.1, 0.003

0.92 0.91 0.92 0.90 0.89 0.91 Optimal 
utilisation rate 
for low/high 
value 0.92 0.93 0.92 0.95 0.96 0.92 

 

First, we summarise the average repair shop utilisation rates in Table 5.4. Each cell in the 

table gives the average optimal utilisation rate over all repair shops in the 32 experiments 

corresponding to a low (high) value for a certain experimental factor. We see that the average 

utilisation varies around 0.9. We found that the utilisation rates of individual repair shops vary 

between 0.74 and 0.98, and in the most cases, the optimal utilisation is between 0.80 and 0.95. 

Table 5.4 also shows the impact of our six experimental factors on the optimal utilisation rate. 

We see that the optimal utilisation rate is only significantly influenced by two factors, namely 

the relative price of repair capacity compared to item costs and the minimum number of 

servers per repair shop. Obviously, a high price of repair capacity yields a high utilisation 

rate. Also, a higher utilisation rate is recommended if repair shops are relatively large (10 

servers or more). This is not surprising, since we know from queueing theory that a queueing 

system with a small number of servers has more items in the queue than a queueing system 

with more servers and the same utilisation rate. 
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Also, we found that the optimal utilisation rates in central repair shops (on average 0.95 

and varying between 0.80 and 0.98) are usually somewhat higher than in local repair shops 

(on average 0.92 and varying between 0.74 and 0.98). This can be explained by the fact that 

long throughput times in central repair shops are usually less critical and by scale effects 

(higher demand rates). Comparing repair shops at the same location, we see that those shops 

receiving the lowest percentage of items entering the location usually have the highest 

utilisation. 

In Figure 5.4, we examine the relation between the relative price of repair capacity and 

the optimal utilisation rate in more detail. We show the minimum, average and maximum 

utilisation rate for all repair shops in experiments two-echelon, two-indenture systems with 

low failure rate, both for small and large repair shops (minimum 2 and 10 servers, 

respectively). The relative price of servers is varied between 10 and 100 times the price of the 

most expensive item. As could be expected, the repair shop utilisation is much more sensitive 

to the relative server price if the repair shop is small. In all cases, we find relatively high 

utilisation rates (≥ 0.74). 
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Figure 5.4. Relation between relative server price and utilisation in 2-echelon, 2-

indenture systems 

 

The trade-off as mentioned in the title of the chapter is illustrated in Figure 5.5, where we 

depict the percentage of the budget allocated to repair capacity as function of the relative 

price of servers (for same cases as in Figure 5.4). The budget as shown in the figure only 

refers to the investment influenced by our decision model, i.e. the costs for the minimum 

number of servers corresponding to 100% utilisation are not included. Because we optimise 

until the availability equals 0.95, the total budget spent increases with the relative server 

price. The figure shows that the percentage spent to repair shop overcapacity is rather stable 

for most reasonable relative prices (say ≥ 10). Although repair capacity decreases with the 



128 Chapter 5 – Inventory – capacity trade-off in spare parts networks  

price, the costs of the total capacity increases. Besides, a lot of stock is required to reach 95% 

availability if the repair shop utilisation becomes high (if server capacity is expensive). 
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Figure 5.5. Percentage of budget spent to repair capacity as function of the relative 

price of servers. 

 

Regarding the step size for the number of servers ε, we found that the solution is 

insensitive to the value of ε. For example, Table 5.4 shows us that the optimal utilisation rate 

does not depend on size of server steps. Also, we found from detailed results that the 

difference between the number of servers optimised with a small or a large step size is 0.03 at 

most. When a small step size is used, the same system availability can be achieved at 0.4% 

less investment on average. However, it requires much more computational time, as 

mentioned in section 5.4.1. Also, one might wonder what the practical use is of a detailed 

figure like 2.34 servers in a repair shop as optimal value, since the exact repair shop capacity 

will not be determined in such detail. Therefore, we suggest not to use too small server steps 

during optimisation. From a mathematical point of view, a step size ε = 0.01 is sufficient. 

However, one may consider larger step sizes as ε = 0.1, because intermediate solution will 

not be chosen for implementation anyway. 

5.5 Conclusions 

In this chapter, we analysed the trade-off between inventory levels and number of servers at 

repair facilities in multi-echelon multi-indenture service part supply systems. We provided a 

greedy optimisation procedure to find the optimal combination of item stocks and repair 

capacities. For a valid optimisation procedure, a modification of the VARI-METRIC 

heuristic appeared to be necessary. Balancing availabilities of the various systems of the 

installed base during the optimisation proved to be worthwhile. Also, we provided a simple 
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procedure to estimate the characteristics of repair facilities, and therefore system availability, 

for non-integer number of servers. In this way, we answered research question 4 of Chapter 1.  

We found that the optimal utilisation of repair shops usually varies between 0.8 and 

0.95. This utilisation rate is mainly influenced by the number of servers and the price of 

servers relatively to the price of items. Also, we have shown that our algorithm is not very 

sensitive to the step size in the non-integer servers optimisation: a step size of ε = 0.1 reduces 

computation time and seems sufficiently accurate for practical purposes. 

 





   

Chapter 6 

Multi-class, multi-server queue with  

preemptive priorities 

Abstract 

 

A multi-class, multi-server queueing system with preemptive priorities is considered. In this 

system we distinguish two priority classes and each of them consist of multiple item types 

(subclasses). Each item type has its own Poisson arrival and exponentially distributed 

service rate. An approximate method to estimate the steady state probabilities is derived with 

an approximation error that can be made as small as desired at the expense of some more 

numerical matrix iterations. Based on these probabilities, approximations for a wide range 

of relevant performance characteristics, such as the expected postponement time for each 

item class and the first and second moment of the number of items of a certain type in the 

system, can be derived. The method is illustrated with some numerical examples. 

Comparison with simulation results shows that with a moderate number of matrix iterations 

(~20), key performance measures, such as the mean and variance of the number of items in 

the system, with an error less than 1% in most cases, can be estimated. In this way, we 

answer research question 5 (Chapter 1), insofar high priority jobs are not outsourced.  
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This chapter is based on the paper: 

“On multi-class multi-server queue with preemptive priority rule.” A. Sleptchenko, A. van Harten, 
M.C. van der Heijden, submitted for publication. 
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6.1 Introduction 

A repair shop in a spare part network is generally able to handle multiple items. Here, we 

assume that some items have high priority and the others have low priority. Each item has its 

own arrival rate and service time distribution. As a consequence, we need to model a repair 

shop by a (multi-server) priority queueing system with two priority classes, where each class 

consists of multiple subclasses (item types). An algorithm to determine performance 

characteristics of such multi-server, multi-class priority queueing systems is not available in 

the literature as far as we know. Therefore, we develop our own algorithm in this chapter, 

assuming Poisson arrivals and exponential service times. We expect that such an algorithm 

can be used for other applications as well, such as computer, communication and production 

systems. Although we proceed from a model with exponential service times and two priority 

groups, it is clear that we can in principle extend our method to analyse systems with more 

priority classes and with hyperexponential service times. 

To analyse multi-class, multi-server queues with two priority groups each containing 

several item classes, we proceed as follows. First, we construct the equilibrium state 

equations (section 6.2). To solve this set of equations, we develop an approximate approach, 

which gives estimates of the system states probabilities. From a computational point of view, 

an exact solution is difficult to achieve, but it can be approximated as close as desired at the 

expense of moderate numerical work. To demonstrate this, we shall heavily rely upon in-

depth insight in the structure of the exact solution. We distinguish three regions when solving 

the equilibrium equations, namely (1) states with at least one high priority item in the queue, 

(2) states with only low priority items in the queue, and (3) states in which the queue is 

empty. We will deal with each region separately. In section 6.3, we will solve the equilibrium 

equations in region 1 (high priority items in the queue). Next, we will show how to deal with 

the remaining equations (no high priority items in the queue) in section 6.4. We can solve the 

latter equations iteratively only, thereby obtaining a cut-off error. Using the (approximate) 

state probabilities, we can derive various system performance characteristics (expected 

waiting times per type, expected queue length per type and even correlations between types, 

expected postponement time per type). In section 6.5, we show as examples how to derive the 

first two moments of the number of items in the system for each item type and the expected 

postponement time per item type. We compare our approximations to simulation results in 
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section 6.6. Finally, we present our conclusions and we discuss some model extensions in 

section 6.7.  

 

6.2 The Model 

6.2.1 Definitions and notation 

As mentioned before, customers are processed according to a preemptive priority rule, That 

is, when a high priority item arrives and no server is available, one of the low priority items 

in service (if there is one) is taken out of service (postponed) to allow the high priority item to 

be served. We assume a random preemption discipline, i.e. each low priority item in service 

is chosen with equal probability. When a server comes available again, one of the postponed 

items is taken back into the service (resumed). We also assume a random resume discipline, 

i.e. the postponed items are selected with equal probability, independent of their 

postponement time. Note that other preemption and resume disciplines require larger state 

spaces and, therefore, more computational efforts. We denote the number of item classes with 

high (low) priority by Nh (Nl). High priority jobs from subclass i arrive according to a Poisson 

process with rate h
iλ  and low priority jobs from subclass j arrive with rate l

jλ . The service 

times of the subclasses are exponentially distributed with rates h
iµ  and l

jµ  for high and low 

priority item classes, respectively. Because of the memoryless property of the exponential 

distribution, it does not make a difference whether postponed jobs are resumed from the 

moment of interruption on or whether they are restarted completely. All servers are equal, 

and if multiple servers are available to process a job, each available server has an equal 

chance to get this job. We use h
iρ , l

jρ  to denote the utilisation rates of high and low priority 

item classes in the system. We denote the total number of high priority items by n and the 

number of high priority items of type i by ni. For low priority items, we will use the notation 

m and mi respectively. 

We characterise the system state by five vectors of dimensions Nh and Nl, where the 

components of each vector refer to the (high and low priority) subclasses. The first four 

vectors are obvious, i.e. vectors containing information about the items in queue and in 

service: 
hs  and ls  – vectors containing the number of high and low priority items in service per 

item class. 
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hw  and lw  – vectors containing the number of high and low priority items in the queue 

waiting for first service per item class (these vectors exclude postponed 

items). 

Next, we need one more vector to keep track of low priority items that have been 

withdrawn from service when a high priority item arrived. This vector is necessary, since 

items with longer processing time will be withdrawn (postponed) more often and then the 

probability to have in front of the queue one of these items is higher. Thus, the fifth vector is: 
lr  – vector containing the number of postponed low priority items per item class. 

Then the systems state probabilities are denoted by ( ), , , , ,h h l l l
n mP w s w s r . 

Other general notations used throughout the chapter are: 

, , ,h l h lµ µΛ Λ  – overall arrival and service rates per each priority class, i.e. 
1

hN hh
ii

λ
=

Λ = ∑ , 

1

lN ll
ii

λ
=

Λ = ∑  and 
1

h h
i
h

i

Nh h h h
i

kλ
µ

µ ρ
=

= Λ = Λ∑ , 
1

l l
i
l

i

Nl l l l
i

kλ
µ

µ ρ
=

= Λ = Λ∑ , 

where the overall utilisation rates for each priority class are h h hkρ µ= Λ , 
l l lkρ µ= Λ  and the total utilisation rate is h lρ ρ ρ= + . 

h
ia , l

ja  – fractions of arrival rates, i.e. h h h
i ia λ= Λ , l l l

j ja λ= Λ . 

h
iδ , l

jδ  – perturbations of service rates, i.e. ( )1 h h h
i iδ µ µ+ =  and ( )1 l l l

j jδ µ µ+ = . 

γ  – ratio of the service rates for high and low priority items, i.e. l hγ µ µ= . 

( ),h ls sµ  – sum of service rates of all items in service,  

i.e. ( ) 1 1
,

h lN Nh h l lh l
i i i ii i

s s s sµ µ µ
= =

= +∑ ∑ . 

( ),h ls sδ  – average perturbation of service rates of all items in service,  

i.e. ( ) ( )1 1

1,
h lN Nh h l lh l

i i i ii i
s s s s

k
δ δ δ

= =
= +∑ ∑ . 

ix  – the ith component of any vector x . 

h
ie  ( l

ie ) – a vector of dimension Nh (Nl) with component i equal to 1 and all other 

components equal to 0; this vector is used to indicate the changes in vectors 
hw  and hs  ( lw , ls  and lr ) during transitions from state to state. 
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h
ije  ( l

ije ) – denotes the jth component of the vector h
ie  ( l

ie ), so h
ije  ( l

ije ) = 1 if i = j and 0 

otherwise. 

x  – denotes the sum of all components of any vector x . 

We will introduce the remaining notation later on. The full list of notation can be found 

in the appendix.  

6.2.2 Stationary state equations. 

In this section, we will write down the equilibrium state equations for the continuous time 

Markov chain. That is, the net exchange of probability in an infinitesimal interval from a 

given state with its neighbours has to be zero in an equilibrium situation. Neighbours of a 

state ( ), , , ,h h l l lw s w s r  with n clients of high priority and m clients of low priority are states 

to/from which a one-step transition is possible, either by an item arrival or by a service 

completion. According to the numbers n and m of items in the system, the system states (so 

the equilibrium equations) can be divided into three areas (see Figure 6.1): 

 

 

m 

m - 1

m + 1

nn - 1 n + 1k 

k 

 

Figure 6.1. Three sets of probability states 
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I. there is at least one high priority item in the queue (n > k, m ≥ 0), 

II. all servers are busy, but there is no high priority item in the queue (n ≤ k, n + m ≥ k), 

III. there is at least one server available (n + m < k). 

All these subspaces have different equilibrium equations. Besides, we have to consider 

the equations for the two boundaries between the regions separately. 

In area I (n > k, m ≥ 0), we have states with all servers occupied and high priority items 

in the queue, so no low priority items are in service ( 0ls = ). Therefore, the transitions from 

the neighbours of state ( ), , ,0,h h l lw s w r  are due to: 

(1) the arrival of high and low priority jobs that enter the queue; 

(2) the service completion of a high priority job; in this case, we consider all combinations 

(i, j) where i represents the subclass of the item for which service is completed and j is 

the subclass of the high priority item that enters service. 

Hence the equilibrium equations are: 

 

( )( ) ( )

( ) ( )

( ) ( )

,

1, , 1
1 1

1,
1 1

,0 , , ,0,

, , ,0, , , ,0,

1
1 , , ,0,

1

h l

h h

h l h h h l l
n m

N N
h h l lh h l l h h l l

i n m i i n m i
i i

hN N
h h h h h hj h h l l

i ij i n m j i jh
i j

s P w s w r

P w e s w r P w s w e r

w
s e P w e s e e w r

w

µ

λ λ

µ

− −
= =

+
= =

Λ + Λ +

= − + −

+
+ + − + + −

+

∑ ∑

∑∑

 (6.1) 

 

where 1

1

h
j
h

w

w

+

+
 characterises the probability that the high priority item with class j is in front of 

the queue. 

In area II (n ≤ k, n + m ≥ k), the equilibrium equations are different for the internal states 

(i.e. n < k, n + m > k) and for the boundary states (i.e. n = k, n + m > k for II-III and n + m = k 

for I-II). 

In the internal states of area II (n < k, n + m > k), all servers are busy, low priority 

items are in service and no high priority items are in the queue (i.e. 0ls ≠ , 0hw = ). So, the 

transitions from the neighbours of state ( )0, , , ,h l l ls w s r  occur due to: 

(1) the arrival of a low priority job that enters the queue, 
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(2) the arrival of a high priority job that is served directly, thereby preempting a low priority 

job and changing the vector lr ; as we assume that low priority items to be withdrawn 

from service are selected randomly, the probability that an item of subclass j is selected 

equals 1

1

l
j
l

s

s

+

+
, 

(3) service completion of a (high or low priority) item type i without postponed items in the 

queue ( 0lr = ), so a new service of a low priority item type j is started; note that subclass 

j is at the front of the queue with probability 1

1

h
j
h

w

w

+

+
, 

(4) service completion of a (high or low priority) item type i with postponed items in the 

queue ( 0lr ≠ ), so the service of a postponed low priority item type j is continued; note 

that subclass j is at the front of the queue with probability 1

1

l
j
l

r

r

+

+
. 

When writing down the equilibrium equations, we use the fact that the service rates of 

the postponed items and the items in the queue are the same due to the memoryless property 

of exponential distribution of the service times. Then, the equilibrium equations are: 

 

( )( ) ( ) ( )

( )

( ) ( ) ( )

( )

, , 1
1

1,
1 1

1,
1 1

, 0, , , , 0, , , ,

1
0, , , ,

1

1
0 1 0, , , ,

1

1
0

1

l

h l

h l

N
l lh l h l h l l l h l l l

n m i n m i
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lN N
h h l lj h l l l

i n m i j jl
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lN N
h h h l ljl h l l l

i i n m i j jl
i j

l
jl
l

s s P s w s r P s w e s r
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P s e w s e r e

s
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w
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w

µ λ

λ

µ

−
=

−
= =

+
= =

Λ + Λ + = −

+
+ − + −

+

+
+ = + + + −

+

+
+ =

+

∑

∑∑

∑∑

( ) ( )

( ) ( )

( ) ( )

, 1
1 1

1,
1 1

, 1
1 1

1 0, , , ,

1
1 0, , , ,

1

1
1 0, , , ,

1

l l

h l

l l

N N
l l l l l lh l l l

i ij i n m j i j
i j

lN N
h h h l lj h l l l

i i n m i j jl
i j

lN N
l l l l l lj h l l l

i ij i n m i j jl
i j

e P s w e s e e r
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s P s e w s e r e

r

r
s e P s w s e e r e

r

µ

µ
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+
= =
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+
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∑∑
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 (6.2) 

 

where I(⋅) denotes the indicator function, so the value of the function is 1 if the statement 

between parentheses is true and 0 otherwise. 
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Then, we consider the border between the areas I and II (n = k). That is, the number of 

high priority jobs in the system equals the number of servers. So, no high priority jobs are 

waiting in the queue and no low priority jobs are in service. Then, the transitions to the state 

( )0, , ,0,h l ls w r  are: 

(1) the arrival of a high priority job i that enters service immediately, thereby preempting the 

single low priority job j that was in service, 

(2) the arrival of a low priority job that enters the queue, 

(3) the service completion of a high priority job i, causing that the single high priority job in 

the queue (type j) is being served; note that a low priority job cannot be completed, since 

all servers are busy with high priority jobs. 

So the equilibrium equations are: 

 

( )( ) ( )

( ) ( )

( ) ( )

,

1, , 1
1 1 1

1,
1 1

,0 0, , ,0,

0, , , , 0, , ,0,

1 , , ,0,

h l l

h h

h l h h l l
n m

N N N
h h l l l lh l l h l l

i n m i j j i n m i
i j i

N N
h h h h h hh l l

i ij i n m j i j
i j

s P s w r

P s e w e r e P s w e r

s e P e s e e w r

µ

λ λ

µ

− −
= = =

+
= =

Λ + Λ +

= − − + −

+ + − + −

∑∑ ∑

∑∑

 (6.3) 

 

Next, we consider the border between the areas II and III (n + m = k, n < k). That is, 

all servers are occupied (with high and/or low priority jobs), the queue is empty and there is 

at least one low priority item in service. Then, the transitions to the state ( )0, ,0, ,0h ls s  are: 

(1) the arrival of a (high or low priority) job i that enters service immediately, 

(2) the service completion of a high priority job i, causing that a single low priority job in the 

queue (type j) is being served; note that a low priority job that is taken into service may 

be either a new service or a postponed service, 

(3) the service completion of a low priority job i, causing that the single low priority job in 

the queue (type j) is being served; again, a low priority job that is taken into service may 

be either a new or a postponed service; note that a high priority job cannot be in the 

queue if a low priority job is being served. 
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Finally, we consider probability states in area III (n + m < k). These states have an 

empty queue and hence no items are postponed ( 0hw = , 0lw =  and 0lr = ). Now the 

transitions from the neighbours of the state ( )0, ,0, ,0h ls s  become much simpler. They 

consist of: 

(1) the arrival of a high priority job that enters service immediately, 

(2) the arrival of a low priority job that enters service immediately, 

(3) the completion of a (high or low) priority job without starting a new job because the 

queue is empty. 

Hence we find: 
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In the next sections, we will show how we can solve these equilibrium equations, thereby 

obtaining the exact system state probabilities. We will address area I in section 6.3 and the 

areas II and III in section 6.4. 
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6.3 System states with high priority items in queue  

In this section, we focus on area I, so there is at least one high priority item in the queue. 

6.3.1 Reducing the set of equations 

First, we note that we can rewrite these state probabilities by conditioning on the total number 

of high priority items in the queue. So, ( ), , , ,0,h h l l
n mP w s w r  = ( ), , , , ,h h l l l

n mP w s w s r′  × 

Pr{distribution of high priority items in queue over subclasses = hw  | number of high priority 

items in queue = hw }. Given the total number of high priority items in the queue, the items 

are distributed over the item subclasses according to a multinomial distribution, 

( )
1 !

!
hwihh

i

h
i

aNh
i w

w
=∏ . The expression ( ), , , , ,h h l l l

n mP w s w s r′  describes the probability that (1) the 

distribution of high priority items in service is given by the vector hs , (2) the low priority 

items in queue are given by the vectors lw  and lr , (3) no low priority items are in service, 

and (4) the total number of high priority items in the queue equals hw . Because it holds that 

hw n k= − , we see that this expression is in fact independent of hw . Therefore, we can omit 

the parameter hw  and rewrite the equilibrium equations for the states with n > k using the 

product form: 

 

( ) ( ) ( ), ,
1

, , ,0, ! , ,0, .
!

h
i

h
wh

N ih h l l h h l l
n m n mh

i i

a
P w s w r w P s w r

w=

′= ∏  (6.6) 

 

In this way, we reduce the number of state probabilities to be solved. 

We substitute the relation (6.6) in equation (6.1) and we divide both sides by hkµ  to 

obtain equations that can be transformed in matrix form. This yields: 
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where 
l

h
µ
µ

γ = . 

Because we use the product form (6.6), we have to sum up all the equations for the state 

probabilities satisfying h h
iw w=∑ . Taking into account that 1h

ia =∑ , we can write all 

equilibrium equations with the same n and m in a matrix form: 
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where ( ), , 0l
n m wP  are vectors containing probabilities ( ), , , 0,h l l

n mP s w r′  as components. The 

dimension of vectors ( ), , 0l
n m wP  is equal to amount of different server states, given that all 

servers are occupied with high priority items. That is, this dimension is equal to 

( ) ( )( )1
, ,kh l

i
d N k d N i

=∑ , with ( ) 1, x y
yd x y  + + 

 
= . hδ  and A are linear operators on a 

( ) ( )( )1
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i
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=∑  – dimensional linear space: 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

, ,

1, 1,
1 1

,0 , 1 ,0 ,0 ,

1,0 , 1 1 ,0 ,
h h

h l h l h l h l h l
n m n m

N N
h h h h h hl h l l h l

n m i ij i j n m i j
i j

w s r s w s r

w s r s e a w s e e r
k

ρ γρ δ

δ+ +
= =

   = + + +   

   = + − + + −   ∑∑

δ P P

AP P
 

 



6.3 System states with high priority items in queue 143 

Solving this matrix equation, we can find all state probabilities with (n > k). To solve it, it is 

worth noticing that lr  only serves as an index, where equations with different indices lr  are 

decoupled. In the next lemma, we explain the structure of the solution of this equation. 

 

Lemma 6.1 

Define the matrix-function ( ), , ;h lρ ρ γ ξZ  as the solution of 

 

( )( ) ( )11 , 1h l h h lρ γρ ρ γρ ξ σ−+ + + + >I δ Z + AZ Z  (6.8) 

Then 
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satisfies all equations for m ≥ 0, n > k. 

Note that ( ) ( )( ) ( )1
,

1
, , ,0, ,h l

n kh h l l h l
w w

P w s w r s r
ξ

ξ ξ
−−

=

   =    ∑ Z C . The notation ,h ls r    

in the right hand side refers to the indicated vector component. 

 

Proof. 

We will prove this lemma by induction using the matrix form (6.7) of the equilibrium 

equations (6.1). 

For m = 0, equation (6.7) can be written as  

 

( )( ) ( ) ( ) ( ),0 1,0 1,01 0,0 0,0 0,0h l h h
n n nρ γρ ρ − ++ + + = +I δ P P AP  

 

which is similar to the multi-class multi-server equilibrium equation having a solution of the 

form ( ) ( )1
,0 0,0

n k

n

−−=P Z C  (see Chapter 3), where Z should satisfy the equation  
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( )( ) ( )11 , 1h l h hρ γρ ρ σ−+ + + >I δ Z + AZ Z  

 

similar to the equation (6.8) with ξ = 0. So, we have that the solution in the form (6.9) is the 

solution of the equation (6.1) for m = 0. 

For m > 0, we first define ( )n x′P  as the solution of:  

 

( )( ) ( ) ( ) ( ) ( )1 1
1

1
lN

lh l h h l
n n j j n n

j

x x a x x xρ γρ ρ γρ− +
=

′ ′ ′ ′+ + + = + +∑I δ P P P AP  (6.10) 

with [ ]0,1jx ∈ , being just a parameter. 

It follows that ( ) ( )( ) ( )
1

, , ;
n k

h l
n x x xρ ρ γ

−−
′ ′=P Z C . By differentiation of (6.10) with 

respect to xj, we find  

 

( )( ) ( ) ( ) ( ) ( )1 1

1
1

lN
ln n n nh l h h l

i i
ij j j j

d x d x d x d x
a x

dx dx dx dx
ρ γρ ρ γρ− +

=

′ ′ ′ ′
+ + + = + +∑

P P P P
I δ A  

 

Hence ( )

0

n

j

d x
dx

x

′

=
 
 

P  satisfies the equation (6.1) for m = 1. 

Using the general property ( ) ( )( ) ( ) ( ) ( ) ( )1m m md d d
dx dx dxxf x m f x x f x−

= + , we find by 

differentiation of (6.10) mj times with respect to each parameter xj that:  

 

( )( ) ( ) ( )

( ) ( )

( )

1
1 1

1
1 1 1

1

1 1

1
l li i

l ll i i

j ll i

m mN N
h l h h

n n
i ii i

m mN NN
ll

j j n n
j i ii i

m mNN
ll

j j n
j ij i

j i

d dx x
dx dx

d da x x x
dx dx

d dm a x
dx dx

ρ γρ ρ

γρ

γρ

−
= =

+
= = =

−

= =
≠

   
′ ′+ + + =   

   

   
′ ′+ +   

   

   
′+        

∏ ∏

∑ ∏ ∏

∑ ∏

I δ P P

P A P

P

 

 

Transforming this expression back to the ( ), , 0n m wP :  
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( ) ( )( ) ( )1
,

01

1,0
!

l imN n kl
n m

xi i i

dw x x
m dx

−−

==

   =      
∏P Z C  

 

Now using the fact that ( )
j j

d x ld d d
jdx dx d daξ

ξ ξ= = , we can change the term 
1

lN l
j jj

a x
=∑  in the 

equation (6.10) to the function ( ) 1

lN l
j jj

x a xξ
=

= ∑  and we can rewrite the probability states 

as:  

 

( ) ( )
( )( ) ( )1

,
01

,0
!

i
l

ml mN n kil
n m

i i

a dw
m d ξ

ξ ξ
ξ

−−

==

   =      
∏P Z C  

 

Finally, we recall that ( ) ( )!, s.t. 
!

m jl
j

jj j

ma

jmm m m
m a

=
=∑∑ ∑∏  and we obtain  

 

( )
( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1

01

1 1

0 1
1

!
! !

1
!

i
l

ml mN n ki

m i i

m
n k n km

j
m

am d
m m d

da
m d

ξ

ξ ξ

ξ ξ
ξ

ξ ξ ξ ξ
ξ

−−

==

− −− −

= =
=

        

     = =         

∑ ∏

∑ ∑

Z C

Z C Z C

 

 

as a well-known Taylor series expansion of ( )( )1
, , ;

n k
h lρ ρ γ ξ

−−
Z   around ξ = 1, where the 

value of ( ), , ;h lρ ρ γ ξZ  is found from  

 

( )( ) ( )11 , 1h l h h lρ γρ ρ γρ ξ σ−+ + + + >I δ Z + AZ Z  

 

This equation can be solved as in the case of the non-priority multi-class queue (Chapter 3) 

using decoupling by lr . 

So the solution has the form: 
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( ) ( ) ( )
( )( ) ( )1

,
01 1

, , ,0, ! ,
! !

h l
li i

h l
w wh l wN N n ki ih h l l h h l

n m h l
i ii i

a a dP w s w r w s r
dw w ξ

ξ ξ
ξ

−−

== =

  
       =           

  

∏ ∏ Z C  

  ■ 

The probabilities of the system states constructed in this section have a differential form, 

therefore we will need derivatives of the matrix Z. To find these derivatives is not an easy 

task, since we can not derive an analytical form of the matrix Z, but we can use the equation 

(6.8) to find such derivatives iteratively. 

6.3.2 On the derivatives of the matrix Z 

Unlike a scalar function, finding the derivative ( ) 1d
dξ ξ − 

 Z  has to take into account the non-

commutativity of ( )d
dξ ξZ  and ( )ξZ . This can be in the following way:  

( ) ( ) ( ) ( ) ( ) ( )1 1 1: 0d d d
d d d

ξ ξ ξ ξ ξ ξ
ξ ξ ξ

− − − = ⇒ = +  I Z Z Z Z Z Z . 

 

This provides a first relation between ( ) 1d
dξ ξ − 

 Z  and ( )d
dξ ξZ . Next, we can use the 

equation defining the matrix ( )ξZ , i.e. if we differentiate (6.8) with respect to ξ, we get 

 

( ) ( ) 10 h ld d
d d

ρ ξ γρ ξ
ξ ξ

− = + +  Z A Z  

 

So, we have a 
0

1 12
kh l

i

N k N i
k i

=

    + − + −        
∑  – dimensional non-singular system of 

linear equations for 
0

1 12
kh l

i

N k N i
k i

=

    + − + −        
∑  variables and, therefore, the derivatives 

( ) 1d
dξ ξ − 

 Z  and ( )d
dξ ξZ  for each value ξ are defined. 

We can find the higher order derivatives in a similar way. We have a 

0

1 12
kh l

i

N k N i
k i

=

    + − + −        
∑  – dimensional non-singular system of linear equations for 

0

1 12
kh l

i

N k N i
k i

=

    + − + −        
∑  variables:  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1
1 1 1

1

1

!
! !

0

m m i m im

m m i m i
i

m m
h

m m

d d m d d
d d i m i d d

d d
d d

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

ρ ξ ξ
ξ ξ

−−
− − −

−
=

−

   + = −   −

 + = 

∑Z Z Z Z Z Z

Z A Z
 

 

Therefore, the derivatives ( ) 1m

m
d

dξ
ξ − 

 Z  and ( )m

m
d

dξ
ξZ  for each value ξ can be obtained from 

the lower order derivatives. 

Note that the equations for derivatives ( ) 1m

m
d

dξ
ξ − 

 Z  and ( )m

m
d

dξ
ξZ  have a block-diagonal 

structure, i.e. they consist of 
0

1k l

i

N i
i

=

 + − 
 ∑  blocks for different lr  of dimension 

12
hN k

k
 + − 
 

 × 12
hN k

k
 + − 
 

 each. Moreover, these blocks have the same structure for 

different lr . Hence, to construct the derivatives ( ) 1m

m
d

dξ
ξ − 

 Z  and ( )m

m
d

dξ
ξZ  for each m 

(given that derivatives of lower order are already known), it is enough to solve once a system 

of linear equation of dimension 12
hN k

k
 + − 
 

 × 12
hN k

k
 + − 
 

 for one of the components of 

lr . 

6.4 System states with no high priority items in queue (n ≤ k) 

In this section, we describe the solution of the equilibrium equations for the states with only 

low priority items in the queue (n ≤ k). 

6.4.1 Reducing the set of equations 

As in the previous section, we can reduce the set of equations by writing the state 

probabilities in product form, conditioning on the total number of low priority items in the 

queue lw . Given this total number, the number of jobs in the queue per low priority subclass 

has a multinomial distribution with parameters lw  and , 1, ,l l l l
i ia i Nλ= Λ = … . So, we 

can write: 

( ) ( ) ( ), ,
1

0, , , , ! , , .
!

l
i

l
wl

N ih l l l l h l l
n m n ml

i i

a
P s w s r w P s s r

w=

′′= ∏  
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Note that we can omit two parameters, namely the number of high priority items in the queue 

per subclass (these are always zero) and the number of low priority items in the queue lw . 

For the latter, it holds that l l lw m s r= − − . 

As before, we substitute this product form into the equilibrium equations (6.2) for n < k, 

m > k – n, and next we sum up the equations for all system states having the total number of 

(non-postponed) low priority items in the queue equal to lw . After dividing the resulting 

equations by hkµ , we obtain the following equations for ( ), , ,n mP′′ ⋅ ⋅ ⋅ : 

( )( ) ( ) ( )

( )

( ) ( ) ( )

, ,
1 1

1,
1 1 1

1,
1

1 , , , , ,

1
, ,

1

0 1 1

l l
l l

l
l h l

l
l

w w
N N

l lh l h l h l l l h l l
i n m i n m

i i

w lN N N
l h h l ljh h l l

i i n m i j jl
i i j

w
N

l h h ll h
i i i j n m

i

s s a P s s r a P s s r

s
a a P s e s e r e

s
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ρ γρ δ γρ

ρ

δ

= =

−
= = =

+
=

   
′′ ′′+ + + =   

   

  +
′′+ − + − 

+ 

 
′′+ = + + + 

 

∑ ∑

∑ ∑ ∑

∑ ( )

( ) ( )( ) ( )
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1 1

, 1
1 1 1
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1 1 1

1

, ,
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i i ij i j n m i j

i i j

w lN N N
l h h h l lj h l l

i i i n m i j jl
i i j

w
N

l
i

i
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I r a s e a P s s e e r

r
a s P s e s e r e

k r

a
k

δ

δ

= =

+
= = =

+
= = =

=

−

 
′′+ = + − + + − 

 

  +
′′+ + + + − + 

+ 

 
+  

 

∑∑

∑ ∑∑

∑ ∑∑

∑ ( )( ) ( ), 1
1 1

1
1 1 , ,

1

l
l l lN N

l l l l l lj h l l
i ij i n m i j jl

i j

r
s e P s s e e r e

r
δ +

= =

+
′′+ − + + − +

+∑∑
 (6.11) 

 

where 
1

1
lN l

ii
a

=
=∑ , and 

l

h
µ
µ

γ = . 

Again, this results in a matrix equation for n < k, m ≤ k – n, namely: 

 

, , , 1, , , 1 , 1, , , 1n m n m n m n m n m n m n m n m n m n m− − + += + + +D P F P E P B P G P  

 

where the operators , , , , ,, , ,  and n m n m n m n m n mD F E B G  on the vectors , ,h l ls s rζ     are 

respectively defined as:  
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( )( )
( )( ),

1 1
,
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1 , , , ,
, ,

, , ,0 ,

1
, , ,

1
, ,

, ,0

h l

h

h l h l h l l
def
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n m h l h l h ln m

k

lN N
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∑
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The equilibrium equations (6.3) for n = k have a similar form, with the only difference that 

these equations include the probabilities of the system states with one high priority item in 

the queue (n = k + 1), which are equal to ( ) ( ) ( )11
!

l

l

w
d

dw ξ ξ ξ−  Z C . So, we can aggregate all 

equations for states with no high priority items in queue (n ≤ k) and write them in matrix 

form. To this end, we write all vectors Pn,m for the states with the same number of items in the 

system (i.e. n + m) into one vector t̂P , with t̂ n m= + . For example, then the equations for the 

states with more items in the system than the number of servers (t > k) can be written as: 
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0, 0, 0, 0, 1

1, 1 1, 1 1, 1 1, 1 1, 2

, , , , , 1
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0
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!
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d ξ
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ξ

−
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−

 
     +          

0
0 Z C
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The equations for n + m ≤ k have the same form, but they do not include the inhomogeneous 

term. 

Rewriting these equations in a matrix form, where the vector t̂P  is composed of the 

vectors Pn,m, we obtain: 

( ) ( ) ( )
ˆ

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 0

1 ˆ,
ˆ !

t k

t t t t t t t
d t k

dt k ξ
ξ ξ

ξ

−

−
− + =

   = + + ≥   −  
Z CD P F P G P B  (6.12) 

ˆ ˆ ˆ ˆ ˆ ˆ1 1
ˆ,t t t t t t t k− += + <D P F P G P  (6.13) 

 

where the matrices ˆ ˆ ˆ,  and t t tD F G  are fixed for t̂ k≥  and depend on t̂  for t̂ k< . 

The dimension of the equations in (6.12) does not depend on t̂ . It can be derived from 

the number of all combinations of Nh + Nl items on k servers including all combinations of j 

postponed items j ≤ n ≤ k. We find: 

 

( )ˆ'' , ''
0

1 1 1dim
k k h l l

t k n k
i n i

N n N k n N i
n k n i≥ ≤

= =

     + − + − − + −=      −     
∑ ∑L  (6.14) 

 

The dimension of the equations (6.13) depends on t̂  and should be equal to the number of all 

combinations of Nh + Nl items on t̂  servers if t̂ k< , i.e. 

 

( )ˆ'' ''
ˆ 1dim ˆ

h l

t k
N N t

t<
 + + −=  
 

L   (6.15) 

 

So, we now have two systems of second order linear difference equations. The first 

system (for t̂ k≥ ) is an inhomogeneous system with a fixed dimension and with fixed 

coefficients. The second system (for t̂ k< ) has coefficients depending on t. Also, the system 
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dimension depends on t̂ . In the next two sections, we describe how we can construct the 

solution of these two systems. 

6.4.2 States with only low priority items in queue (t ≥ k, n ≤ k). 

The probabilities of the system states having only low priority items in queue satisfy the 

system of linear inhomogeneous difference equations of second order with fixed coefficients 

(6.12). However, the inhomogeneous term has a differential form, so the standard procedure 

of solving the inhomogeneous equations (solution of homogeneous part + partial solution of 

inhomogeneous part) is difficult to apply. Therefore, we will look for the solution in a 

differential form ( ) ( )1
! 0

t
d

t k t d vξ ξ
ξ+ =

=P  where ˆt t k= − . The substitution of this solution into 

the equation (6.12) gives: 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

0 0 0

1

0

1 1 1
! 1 ! 1 !

1 ,
!

t t t

t

d d dv v v
t d t d t d

d t k
t d

ξ ξ ξ

ξ

ξ ξ ξ
ξ ξ ξ

ξ ξ
ξ

− +

= = =

−

=

     
= +     − +     

   + >    
Z C

D F G

B
 

 

Here we can apply the following equations: ( ) ( )( ) ( ) ( )1

0 0

t td d
dx dxx x

xf x t f x−

= =

 =    and 

( ) ( )( ) ( ) ( ) ( )22

0 0
1t td d

dx dxx x
x f x t t f x−

= =

 = −   . These equations can easily be proved as shown 

in Lemma 6.1. These two equations allow us to remove the derivatives from equation (6.12) 

and to obtain a new expression for the function v(ξ) for any t > 0: 

 

( ) ( ) ( ) ( ) ( ) ( )
1

2 1

0

1 0,
1 !

t
d v v v t k

t d ξ
ξ ξ ξ ξ ξ ξ ξ ξ

ξ

+

−

=

   − − − = >   +  
Z CD F G B  (6.16) 

 

The function C(ξ) can be expressed as a part of the vector-function v(ξ), which corresponds 

to the states with k high priority items in the system vk(ξ), i.e. C(ξ) = vk(ξ). 

The right part of equation (6.16) should be a function which becomes zero for any t > 0, 

i.e. a linear function. Hence, we obtain another expression for the vector-function v(ξ), that 

does not contain derivatives, but that contains unknown vectors C1 and C2: 

 

( ) ( ) ( ) ( ) ( )2 1
1 2kv v v v C Cξ ξ ξ ξ ξ ξ ξ ξ ξ−− − − = +ZD F G B  (6.17) 
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or 

 

( ) ( ) 1 2v C Cξ ξ ξ= +H   (6.18) 

 

The constants C1 and C2 can be easily expressed via the probability states kP  and 1k −P , 

i.e. we have from equation (6.17) that for ξ = 0, 

 

( ) 20v C− =G  

 

and recalling that ( )0 kv = P , we obtain an equation for C2: 

 

2 kC = −GP  

 

Next, we can take the derivative of equation (6.17) in the point ξ = 0 and we obtain 

 

( ) ( ) ( ) ( )1
10 0 0 0 .kv v v C−′− − =ZD G B  

 

The left hand side terms of the last equation are also encountered in equation (6.12) for t = k, 

if we take into account that ( )0k v=P , ( )1 0k v+ ′=P  and that the matrices kD , kG  and kB  are 

equivalent to D , G  and B , respectively. Then we find: 

 

( ) ( )1
1 1 10 0 .k k k k k k k kC v−

+ −= − − =ZD P G P B F P  

 

So, we have 

 

1 1k kC −= F P  

 

In this way, we have defined a function v(ξ), given the probability vectors kP  and 1k −P . 

Next, all probability vectors t̂P  for t = k + 1 … ∞ follow from kP  and 1k −P . However, an 

essential piece of information has not been used up to now. It is clear that we are looking for 
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decaying solutions t̂P  for t̂ → ∞ . As a consequence, v(ξ) should be analytic on a circle with 

radius 1 + ε for some ε > 0. Due to (6.17), extra conditions have to be satisfied at points ξ 

inside this circle where ( )ξH  is singular. It turns out that there are several such points in 

general. For example, ξ = 0 and ξ = 1 are points of this type. It is easy to check that in case ξ 

= 0 any vector with 0 entries whenever 0lr >  is in the null space of G . Using the 

equilibrium property for subsystems with , , h l ls s r  fixed and with m arbitrary, it is not 

difficult to check that ( )1, ,1 ⊥=1 …  is a left eigenvector of ( )1H  for the eigenvalue 0. In the 

next section, we shall show that the decay requirement boils down to a relation between the 

initial condition 1k +P and kP  of the following type: 

 

1k k k+ =P Q P  

 

In the next section, it will be shown that this can be done using a direct method without 

reference to singular points of ( )ξH . This result is crucial in the case without queue. 

6.4.3 Decay of t̂P  for t̂ → ∞  

From (6.17), it follows by differentiating t ≥ 2 times with respect to ξ that: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

10 0 0 0 0 0 0.0 1
t t t

t t t

d d dt t tv v vtd d dξ ξ ξ

−

−
′+ + + =H H H  

 

We can also write this in the form 

 

0
0

t

i k m i
i

h + −
=

=∑ P  

 

where ( )1
! 0i

i
d

k i i d
v

ξ+ =P  and ( )1
! 0i

i
d

i i d
h

ξ
= H . 

An important consequence of this equation is that 

 

1
t t

k k k k k t+ += +Q ΩP P P   (6.19) 
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We will derive this result shortly. First, this implies that the solutions k t+P  decay for 

t → ∞  if t
kΩ  remains bounded: 

 

1 1 1 with lim t
k k k k kt+ + + →∞

= = QP Q P Q  

 

Let us now show how the matrices t
kQ  and t

kΩ  can be determined. 

Using backward recursion from t to k + 1, we can show that for any t and t* (t > t*) a 

relation 

 
*

* *

*0
1

0
t

t t
t k i t k i

i
+ + −

=

+ =∑Θ ΘP P   (6.20) 

 

is valid. That is: 

For t* = t – 1, it is clear from the equation for t k+P  that we can take t
i ih=Θ . 

For t* < t – 1, we have the equation derived in the previous induction step and also the 

original equation for *t k+
P : 

 
* * *

* *

* *

1 1 1
0 1 1

0

0

0

t t t
t k kt k t

kt k t
h h

+ + +
+ + +

+

+ + + =

+ + =

Θ Θ ΘP P P
P P

 

 

Then, multiplying the first equation by ( )* 1
1

0 1
th

−
+Θ  and taking the difference, we obtain 

 

( ) ( )

( )

* * * *

* *

* *

* *

1 1
1 1 1 1

0 1 0 0 1 2 1 1

1
1 1

0 1 1
0

t t t t
t k t k

t t
kt t

h h h

h h

− −
+ + + +

+ + −

−
+ +

+

 + − 
 

+

 + − = 
 

Θ Θ Θ Θ

Θ Θ

P P

P

 

or in other terms 

 
* * *

* *0 1 1
0t t t

t k kt k t+ + −
+ + + =Θ Θ ΘP P P  
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where the matrices 
*t

iΘ  are equal to 

 

( )
( )

* * *

* * *

1
1 1

0 0 1 0

1
1 1 *

0 1 1 , 1,

t t t

t t t
i i i

h

h h i t

−
+ +

−
+ +

+

=

 = − = 
 

Θ Θ Θ

Θ Θ Θ …
 

 

So, we have shown that for any t and t* (t > t*) the relation (6.20) is valid. Next, taking t* = 2, 

we obtain 
2 2 2
0 1 1 2 0t k k k+ ++ + =Θ Θ ΘP P P  

 

This is the desired result if we identify ( ) 12 2
1 0

t
k

−
= −Ω Θ Θ  and ( ) 12 2

1 2
t
k

−
= −Q Θ Θ . Herewith the 

relation (6.19) is shown. 

Note that the matrices t
kΩ  and t

kQ  can be computed using a straightforward iteration 

procedure, which requires O(t2) matrix operations. In this iteration, we check the 

boundedness of t
kΩ . Numerical evidence shows that this is the case in all cases we 

considered. Moreover we found that 

 

( )lim 1t
kt

ω ρ
→∞

≈ −Ω  

 

where ω is some constant depending on other system parameters. Hence, by taking t 

sufficiently large, we have a good approximation of the matrix kQ  that will play a role next. 

Furthermore, 1ρ →  is not a problem for the convergence of the iterations. 

In the computation of performance measures, we shall also need information about the 

function v(ξ) at ξ = 1. As an intermezzo, we describe in the next subsection how such 

information can now easily be obtained. 
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6.4.4 On the vectors v(1), v′(1) and v′′(1). 

Let us discuss now the procedure to find v(1), v′(1) and v′′(1), which we need for the 

performance characteristics. This procedure is non-trivial due to singularity of the matrix 

( )1H . Therefore, we cannot find the vector v(1) just by inverting the equation (6.17) at ξ = 1 

 

( ) ( ) 11 1 k k kv −= −H F P GP .  (6.21) 

 

We use the Taylor expansion and we derive from (6.17) that  

 

( ) ( ) ( ) ( ) 11 1 1 1 k kv v −′ ′+ =H H F P   (6.22) 

 

In this equation, we have to get rid of the term with v′(1). It can be done if we project in 

(6.22) both sides onto the null-space of ( )1H . Hence, we multiply this equation by the matrix 

Pr1 constructed as 

 

( ) 1
1Pr S Sε −= 1

0  

 

where S is the matrix of eigenvectors of ( )1H . The block with 1 on the diagonal corresponds 

to the zero eigenvalue and the block with 0 on the diagonal to non-zero eigenvalues; ε is 

some number > 0 that can be used for scaling purposes. It is easy to show that multiplication 

of the matrices Pr1 and ( )1H  gives zero: 

 

( ) ( ) ( ) ( )( )1 1
1Pr 1 1 0S S S Sε ε− −= = =1 1 0

0 0 *H H  

 

So, we have now a new system of linear equations 

 

( ) ( ) ( ) ( )1 1 11 Pr 1 1 Pr k k kv −′ + = + −  IH H F P GP  
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where the matrix ( ) ( )11 Pr 1′ + H H  turns out to be non-singular. In all our experiments, it 

turned out that 0 is a single eigenvalue of ( )1H . As we saw before, the corresponding left 

eigenvector is ( )1, ,1 ⊥=1 … . As a consequence, the matrix Pr1 can be constructed as a matrix 

with elements of one row (any row) equal to 1. 

 

1

1 1
Pr

0 0

 
 =
 
 

 

 

In the same way, we can find the derivatives v′(1), v′′(1), etc. That is 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

1 2Pr 1 1 1 Pr 1 1

1 3Pr 1 1 2 1 3Pr 1 1 1 Pr 1 1
k kv v

v v v
−′ ′ ′ ′′   + = − + +   

′ ′′ ′ ′′ ′ ′′ ′′′     + = − + − +     

H H H H F P
H H H H H H

 

 

6.4.5 States with empty queue ( t̂ k< )  

The equilibrium equations for t̂ k<  do not have an inhomogeneous term: 

 

ˆ ˆ ˆ ˆ ˆ ˆ1 1t t t t t t− += +D P FP G P  

 

However, now the matrices ˆ ˆ ˆ, , t t tD F G  depend on the value of t̂ . We can find t̂P  for t̂ k<  

using a recurrent expression. The complete solution can be represented as: 

 

ˆ ˆ ˆ ˆ ˆ 1 01 1t t t t t− −= =P Q P Q Q Q P  

 

where t̂Q  follows recursively from 

 

( ) 1
ˆ ˆ ˆ ˆ ˆ1

ˆ, , ,1t t t t t t k−

+= − =Q D G Q F …  

 

In this recurrent relation, the matrix kQ  was found in the previous section. The free constant 

0P  is determined by 
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( ),
, , , ,

, , , , 1
h h l l l

h h l l l
n m

w s w s r

P w s w s r =∑  

 

or 

 

( ) ( )

( )

, ,
ˆ ˆ,

,
,

0, ,0, ,0 0, , , ,

, , ,0, 1

l

l

h l h l l l
n m n m

t k r n k t k

h h l l
n m

n k r k

P s s P s w s r

P w s w r

≤ ≤ ≤ >

> ≤

+

+ =

∑ ∑

∑
 

 

It is easy to show that the sum ( ),ˆ,
0, , , ,l

h l l l
n mr n k t k

P s w s r
≤ ≤ >∑  is equal to v(1). From the 

previous section, we know that v(1) can be expressed in kP  and 1k −P . Hence ( ) ( )0
01 1v v= P , 

where v0(1) can simply be expressed in , kF G  and in products of the sort ˆ 1tQ Q . Now 0P  

follows from: 

 

( ) ( )( ) ( )
1 10 1 0

ˆ ˆ ˆ0 1 ,
1

1 , , 1 , 1 1 1
k

n k kt t n k t k
i

v v
− −−

>≤ ≥
=

 
+ + + − = 

 
∑ 1 1 1 I ZP Q Q , 

 

where ( )0 1kv  is the part of the vector v0(1) with k high priority items in the system and 1* is a 

vector with all elements equal to 1 and with a dimension corresponding to dimension of the 

state spaces (cf. expressions (6.14)-(6.15)), i.e. ( )ˆ
ˆ 1dim ˆ

h l

t
N N t

t
 + + −=  
 

1 , ( )ˆ,dim n k t k≤ >1  = 

0
1 1 1h l lk k

i n i
N n N k n N i

n k n i= =

     + − + − − + −     −     
∑ ∑  and ( ) 1dim

h

n k
N k

k>
 + −=  
 

1  

Hence, we found the probability states for ˆ 0, , 1t k= +…  and the values of the first 

derivative of the function v(1) that we need to calculate the performance measures for the 

queueing system. 

 

6.5 Performance measures 

In this section, we will concentrate on the performance criteria for the low priority items in 

the system, since performance indicators for the high priority items can be calculated using 

the non-priority multi-class, multi-serve queue analysis presented in Chapter 3. The latter is 
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possible due to the preemptive priority rule in our system, i.e. low priority items don't 

influence processing of high priority items, and therefore they can be ignored. 

We show here how to calculate the mean number of low priority items of type i in the 

queue, the mean number of the low priority items of type i in the postponed state and the first 

two moments of the total number of the low priority items of type i in the system. We denote 

by l
iq , l

iPS and l
iR  the number of low priority items of subclass i in the queue, in the 

postponed state and in the system, respectively. Such performance indicators play a role in 

spare part service networks as discussed in the previous chapters. Other interesting 

performance measures are the expected number of postponements per item of type i, the 

expected residential time of items of type i in service, in queue and postponed, respectively. 

The mean number of the low priority item i in the queue can be found as the sum over all 

states with low priority items in the queue (i.e. zones I and II) of the state probability 

multiplied by the number of low priority items of type i in the queue in the respective states: 

 

( ),
0 0 , , ,

, , , , .
h h l l l

h h l l l

l l h h l l l
i i n m

n m w s w s r
w s n w s r m

E q w P w s w s r
∞ ∞

= =
+ = + + =

  =  ∑∑ ∑ ∑  

 

In this expression, various terms can be simplified via the function v(ξ) and via the matrix 

Z(ξ) using the Taylor expansion: 
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ξ
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This finally gives us 
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( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

1 1

1
ˆ,

, 1 1 1 1

, 1 1 1 , 1

l l
i i n k k

l l
i n k k i n k t k

E q a v

a v a v

− −

>

−

> ≤ ≥

  ′= − − − 

′ ′+ − +

1 Z I Z Z I

1 Z I Z 1
 

 

Here vk refers to the vector components of v with ls k= . The notation 1* is used for a 

vector with components 1 of the dimension indicated by the subscript as introduced before. 

In an analogous way, we obtain 

 

( ) ( )ˆ,, 1 , 1
l l

i il r r
i n k k n k t kE PS v vχ χ> ≤ ≥

  = +   

 

where 
l

ir
n kχ >  and ˆ,

l
ir

n k t kχ ≤ ≥  have the number of postponed low priority items of type i 

corresponding to the vector component ( ), ,h l ls s r  as components. 

Using similar vectors ˆ,

l
is

n k t kχ ≤ ≥  and ˆ

l
is

tχ , which keep track of amounts of the low priority 

items in service, we can write down an expression for the mean number of items of type i in 

service: 

( )
1

ˆ ˆ ˆ1 0 ,
ˆ 1

, , 1
l l

i i

k
l s s

i t t n k t k
t

E SR vχ χ
−

≤ ≥
=

  = +  ∑ Q Q P  

 

Note that the mean number of items of type i in service can also be estimated via Little's law, 

i.e. 

 
l l l

i i iE SR λ µ  =   

 

We can use this as a test to check the accuracy of our numerical approximations in the next 

section. 

The expected value of l
iR  is composed of these three terms: 

 
l l l l

i i i iE R E SR E q E PS       = + +         
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Next, Little's law can be applied to calculate performance indicators as the mean waiting 

time until the first time that an item enters service l
iE W   , the mean postponement time 

l
iE PsTime    and the mean sojourn time l

iE SJTime   : 

 
l l l

i i i

l l l
i i i

l l l
i i i

E W E q

E PsTime E PS

E SJTime E R

λ

λ

λ

   =   
   =   
   =   

 

 

and, of course, 

 

1l l l
i i il

i

E SJTime E W E PsTime
µ

     = + +       

 

Note that l
iE PsTime    has to be interpreted as: the expected total time that an item of type i 

spends in a postponed state between the moment it leaves the queue and the moment its 

service is completed. Further, we should note that even though preemption occurs, the 

expected total service time equals 1 l
iµ  due to memoryless property of the exponential 

distributions of the service times. 

Let us now focus on another interesting quantity: l
iE nrPreemptEvent   , the expected 

number of preemption events per item of type i. In order to compute it, we need the arrival 

rate of a low priority item into the postponed state. It can be calculated using the state 

probabilities as derived in the previous sections. The arrival rate of low priority items i into 

postponed state is equal to the arrival rate of high priority items multiplied by the probability 

that item i was withdrawn from service: 

 

( ) ( )ˆ, ,
, , ,

0, , , , , 1
l

i

h l l l

l
sps h h l l l hi

i n m n k t kl
s w s r

s P s w s r v
s

λ χ ≤ ≥= Λ = Λ∑  
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where the components of the vectors ˆ,

l
is

n k t kχ ≤ ≥  are equal to 
l

j
h

s

s
 of the corresponding vector 

component ( ), ,h l ls s r . 

Comparing the number of preemption events with the number of arrivals over a long 

interval, it is clear that number of preemption events per item entering the system is equal to: 

 
l ps l

i i iE nrPreemptEvent λ λ  =   

 

It is now also possible to compute the expected time between the moment an item of type 

i is postponed and the next moment when the service process was resumed again, i.e. the 

expected re-entrance into service time, l
iE ReenterTime   . Using Little's law again, we 

obtain 

 
ps l l

i i iE ReenterTime E PSλ    =     

 

Note that the number of preemption events per each item entering the system can be also 

calculated as: 

 
l l l

i i iE nrPreemptEvent E PsTime E ReenterTime     =       

Let us conclude this section on performance measures with some remarks on the 

calculation of the second moment of l
iR . Here we should take into account the correlations 

between numbers of items in queue, in service and in the postponed states. This can be done 

analogous to computations for non-priority systems presented in Chapter 3. After a lengthy 

derivation we obtain: 
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The second moments of l
iSR , l

iq  and l
iPS  can be given analogously. 

 

6.6 Numerical experiments 

We implemented our algorithm in Borland Delphi 5 and we ran several experiments on a 

Pentium III-500 PC. In this section, we discuss the results of three sets of numerical 

experiments. First, we study the convergence speed and computer time requirements of our 

iterative procedure. Next, we examine the impact of the system parameters on the key 

performance characteristics for the low priority items as presented in the previous section. 

Finally, we compare the number of items in the system for priority queues to non-priority 

queues. 

6.6.1 Convergence of iterative procedure and computation times 

To examine the computational efforts necessary to obtain accurate results by the proposed 

algorithm, we first examine the estimates for the first and second moments of numbers of 

items in the system as function of the numbers of iterations t̂  in our algorithm, see formula 

(6.19). 
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We chose the following parameter settings for our numerical experiments: 

- k is equal to 4; 

- Nh and Nl are fixed to 2; 

- the arrival rates are fixed and equal to: 1
hλ  = 1.75, 2

hλ  = 2.25, 1
lλ  = 2.75, 2

lλ  = 3.25; 

- the service rates satisfy: ( )1h hh
i iµ µ δ= +  and ( )1l lh

i iµ µ δ= + , where the δ1
* = 0.5  

and δ2
* = -0.5; 

- µh is varied so that ρ equals 0.75, 0.85 or 0.95. 

As performance measures, we focus on the mean and variance of the number of low priority 

items in the system per class, because the characteristics of high priority items are not new 

(they can also be obtained using our method from Chapter 3). 

First, we compared the results of our numerical procedure to some results obtained by 

discrete event simulation. We found that the deviation between the calculated and simulated 

performance measures already lies within 95% confidence interval after 10 iterations. 

Further, we have checked whether the test l l l
i i iE SR λ µ  =   from the previous section is 

satisfied. The experiments have shown that the average relative error of this test is ~0.2% 

after 20 iterations and ~0.04% after 40 iterations.  

Next, we examine the convergence speed and computer time requirements of our 

iterative procedure. In Figure 6.2, we plot the maximum error for the mean and the variance 

of the numbers of low priority items in the system obtained by our algorithm as function of 

the number of iterations. As benchmark, we use the results after 80 iterations, because then 

the values of the performance measures hardly change anymore in all experiments.  
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Figure 6.2 Error in performance estimators of low priority items against amounts of 

iterations and computation time for cases with 4 item types and 4 servers and different 

utilisation rates 

 

Under the x-axis, we show the CPU time required for our calculations using a Pentium 

III-500 PC. We find that the CPU time is approximately a quadratic function of the number 

of iterations. The reason of this behaviour is that for t iterations the algorithm requires O(t2) 

matrix operations. As a consequence, we need long run times to obtain extremely accurate 

results. Figure 6.2 also shows that the CPU-time requirements are modest if we accept a 

slight approximation error. For example, the maximum approximation error is less than 1% 

after 10 iterations, and we need only 90 seconds for these calculations. 

Figure 6.2 also shows another interesting characteristic of our algorithm. We see that for 

systems with high utilisation rates we can obtain good results for low priority items with less 

iterations. These cases are most interesting for our application (spare part management). 

Further, we have an exact method to estimate the performance characteristics of high priority 

items that is independent of ρ as for computational effort (cf. Chapter 3). Together, we are 

able to obtain sufficiently accurate results for the performance characteristics required, 

especially for the most practical cases (high values for ρ).  

6.6.2 Impact of system parameters on performance characteristics 

Next, we study the influence of the most important parameters of the MCMS priority system 

on the performance measures. From queueing theory, we know that the total utilisation rate ρ 

and the number of servers k are such parameters for any queueing system. However, we have 

learned from the experiments with the MCMS non-priority queueing system (Chapter 3) that 
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the fractions of arrival rates (ai) and the perturbations of the service times (δi) might also 

seriously influence the performance characteristics of the queueing system. 

We did computations for a large set of instances. Since the effects we want to discuss are 

already present for small systems, we shall only present the results on experiments for 3 

servers and 3 items. One of items has high priority and two have low priority. The utilisation 

rate ρ is fixed to 95%. First of all, we want to see the influence of the difference between the 

service rates. This difference is defined by the parameters γ and 1

2

l

l
µ
µ

, where 1
lµ  and 2

lµ  are 

the service rates of the low priority classes. Also, we would like to see the influence of the 

utilisation rate for high priority items. Hence, we vary three parameters: ρh, γ and 1

2

l

l
µ
µ

. The 

other parameters are either fixed (e.g., the fractions of arrival rates within the group of low 

priority items are equal to 1
la  = 0.3 and 2

la  = 0.7), or they are completely defined by the 

other parameters (e.g. 1
lδ  and 2

lδ ). In this way, we have 18 experiments. We choose the 

values 0.5, 1 and 2 for both γ and 1

2

l

l
µ
µ

 and 20% and 60% for ρh. Thereby, we obtain 3×3×2=18 

model runs. 

Some interesting performance characteristics are presented in Table 6.1: the expected 

total number of items in the system for each low priority subclass l
iE R   , the expected 

number of items in the queue for each low priority subclass l
iE q   , the expected number of 

the postponed items for each low priority subclass l
iE PS    and the expected number of 

preemption events per each low priority item entering the system 
ps

i
l

i

λ

λ
. 
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Table 6.1 Impact of high priority utilisation and service rate ratios on the performance 

of low priority items; each cell in the table contains the performance measure for both 

low priority item classes  

 ρh = 20% ρh = 60% 

1

2

l

l
µ
µ

 γ l
iE R    l

iE q    l
iE PS  

ps l
i iλ λ  l

iE R    l
iE q    l

iE PS    ps l
i iλ λ

6.21 5.03 0.14 0.73 4.34 3.38 0.47 2.95
0.5 

13.10 11.73 0.16 0.36 8.98 7.89 0.52 1.43
6.74 5.59 0.11 0.37 5.85 4.96 0.40 1.49

1 
14.37 13.04 0.12 0.18 12.58 11.58 0.44 0.72
7.78 6.66 0.07 0.18 8.87 8.06 0.33 0.75

0.5 

2 
16.84 15.55 0.08 0.09 19.72 18.80 0.35 0.36
5.31 4.54 0.09 0.47 3.80 3.18 0.30 1.89

0.5 
12.38 10.59 0.21 0.47 8.86 7.43 0.69 1.89
5.84 5.10 0.07 0.24 5.32 4.76 0.25 0.95

1 
13.63 11.90 0.15 0.24 12.42 11.11 0.58 0.95
6.89 6.17 0.05 0.12 8.37 7.85 0.20 0.48

1 

2 
16.08 14.40 0.11 0.12 19.52 18.31 0.47 0.48
5.27 4.83 0.05 0.27 3.65 3.30 0.17 1.08

0.5 
13.37 11.26 0.25 0.56 9.39 7.70 0.83 2.23
5.82 5.39 0.04 0.14 5.20 4.88 0.14 0.54

1 
14.61 12.57 0.19 0.28 12.95 11.38 0.70 1.12
6.88 6.46 0.03 0.07 8.27 7.97 0.11 0.27

2 

2 
17.06 15.08 0.13 0.14 20.04 18.60 0.57 0.56

 

From Table 6.1, we can draw the following conclusions: 

• The numbers of items in the postponed state increase with the utilisation rate of the 

high priority items ρh (this is not a trivial result since ρ = ρh + ρl is constant, hence 

increasing ρh means decreasing ρl). 

• The total number of postponed items hardly depends on the ratio 1

2

l

l
µ
µ

. 

• However, the dependence of the total number of low priority items in queue on the 

ratio 1

2

l

l
µ
µ

 is remarkable. Namely, the numbers of items in queue (hence, the waiting 

times) are lower when service times of low priority items are equal ( 1 2
l lµ µ= ), than 
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when perturbations of service times of low priority items occur. This can be 

interpreted as a sort of Pollaczek-Khintchine effect (cf. Tijms, 1994), i.e. the average 

waiting time increases when the variability of the service time increases. 

• The number of low priority items in the queue (hence, the waiting times) is lower 

when the service times of high priority items are shorter (γ is smaller). 

• The number of low priority items in the queue decreases with the utilisation rate of 

high priority items (ρh) when the service time of the high priority items is shorter or 

equal (γ ≤ 1) and it increases when the service time of the high priority items is longer 

than the average service time of the low priority items (γ > 1). 

It is also possible to derive from this table the waiting times in the queue and in the 

postponed state and the total time spent in the system. This can be done using Little's law as 

was shown in section 6.5. 

6.6.3 Comparison between priority and non-priority queues. 

To conclude this section, we sketch the effect of applying a priority queueing rule. Therefore, 

we vary ρ in the experiment with Nh = 1, Nl = 2, k = 3, 1 2
l lµ µ  = 0.5, γ = 0.5 and ρh = 0.6ρ, ρl 

= 0.4ρ. We compare the total numbers of items in the system for cases with and without 

priority rules (Figure 6.3). 
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Figure 6.3 Relative increase (decrease) of the total number of low (high) priority items 

caused by introduction of priority rules into the queueing system  

 

The picture shows not only that the introduction of priority rules cause increase 

(decrease) of the total number of low (high) priority items in the system, but also the scale of 
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this increase (decrease). We see that there is already a significant impact of priority rule 

usage on the number of items in the system if the utilisation is only moderate (0.6-0.8). This 

confirms the conjecture that the appropriate use of priority rules may provide an opportunity 

for efficiency gain in spare part networks. We will address this issue in more detail in 

Chapter 8. 

6.7 Conclusions and generalisations 

In this chapter, we derived a method to analyse multi-class M/M/k priority queues with 

preemption and two priority groups (high and low). Each priority group can contain several 

classes of items with different arrival and service rates. The proposed method is based on 

solution of the stationary state equations. It uses an iteration algorithm. The computational 

effort to find good approximation depends on the number of types, number of servers and 

utilisation rate (since higher utilisation rate requires more iterations). For example, system 

with 4 subclasses, 4 servers and utilisation rate of 95% needs O(20) matrix operations, where 

dimension of each matrix is 238×238. Due to the increase of the size of matrices, the 

computational effort increases rapidly for large k, Nh and Nl. For example, in case of k = 5, Nh 

= 2 and Nl = 3, we have to deal with state space (and matrices) of dimension 1782×1782. 

Approximations are necessary then. As an approximation, we may replace groups of items 

with similar characteristic by one item with average service properties. Thereby, we answered 

partly research question 5 (Chapter 1), i.e. for models without outsourcing. 

The presented queueing system assumes random preemption of low priority items and 

random resumption of the preempted items. Several other situations can be easily dealt with 

and the equilibrium equations for queueing systems with different preemption and 

resumption rules can be formulated and solved. As other preemption (resumption) rules, one 

can think of class-dependent preemption (resumption) probabilities or FIFO rules. However, 

the latter situations will lead to equilibrium equations of higher dimension than the ones 

presented in this chapter.  

Our method can in principle be used as approximation for problems with more priority 

groups. This is possible iteratively due to preemption property. That is, we can estimate 

performance estimators for each priority group ignoring all classes with lower priorities and 

aggregating all classes with high priorities into one high priority group. However, in this case 

the dimension of the state space becomes extremely large and approximations for the 

problem with two priority classes are needed as well. This method has still to be explored. 
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Also, our algorithm can in principle be used for multi-class, multi-server priority queues 

where items have hyperexponential (Hx) service times. We can deal with these cases by 

representing each class as x classes with exponential distributed service time and adopting the 

performance estimators for the total number of items in the system among these x classes. 

 



   

Chapter 7 

 An exact analysis of the multi-class M/M/k priority queue  

with outsourcing 

Abstract 

 

We consider a multi-server queueing model with two priority classes that consist of multiple 

item types each. The high priority items are outsourced if they cannot be served immediately 

upon arrival. Each item type has its own Poisson arrival and exponential service rate. We 

derive an exact method to estimate the steady state probabilities for both preemptive and 

non-preemptive priority disciplines. Based on these probabilities, we derive exact 

expressions for a wide range of relevant performance characteristics for each item type, 

such as the moment of the number of items in the queue and in the system, the expected 

postponement time and the fraction of items that are outsourced. We illustrate our method 

with some numerical examples. These results along with the results of Chapter 6 answer 

research question 5 of Chapter 1 completely. 
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This chapter is based on the paper: 

“An exact analysis of the multi-class M/M/k priority queue with outsourcing”. A. 

Sleptchenko, M.C. van der Heijden, A. van Harten. Submitted for publication. 
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7.1 Introduction 

In this chapter, we consider a multi-class priority queueing model where high priority items 

are outsourced if they cannot be served immediately upon arrival. When repairing high 

priority items, delay because of lack of repair capacity may have serious consequences in 

terms of the availability of the installed base. An option to prevent delay is to outsource 

urgent (i.e. high priority) repair jobs that cannot be served immediately, even if this implies 

higher costs. To examine whether this is worthwhile, we need a model to determine the 

percentage of jobs that is outsourced under such a policy and to examine the impact on low 

priority items. After all, outsourcing of a part of the high priority jobs means that the effective 

server utilisation decreases, and thus the number of low priority items in the system 

decreases. As a consequence, outsourcing of a part of the high priority jobs leads to a reduced 

need for inventories of high and low priority items. Therefore, we analyse a multi-class 

M/M/k priority queue with outsourcing in this chapter. We consider both preemptive and non-

preemptive priorities. We show that outsourcing high priority jobs reduces the complexity of 

the steady state equations. We present a method to solve the steady state equations exactly. 

Therefore, we are able to derive a wide range of performance characteristics, including the 

first two moments of the number of items in the system per item class that we need to analyse 

spare part networks. Our results can be used for other applications as well. For example, we 

can interpret outsourcing repair jobs as impatient customers that leave the system if there is 

no available server. Such queueing models arise in applications in computer and 

telecommunication systems. 

Our contribution to the literature (cf. Chapter 1) is to give an exact solution for the 

equilibrium probabilities in an M/M/k priority queue with subclasses in an outsourcing 

situation. This model is useful for various applications, such as the analysis of spare part 

networks as mentioned above. In that case, we are primarily interested in the first two 

moments of the number of items in the system for each item class, where we include the 

number of outsourced items for the high priority group. Note that we can easily calculate 

these first two moments for high priority items if the repair times in the own repair shop and 

outsourced are identical, because this can be modelled as an M/M/∞ queue. These first two 

moments are much more difficult to obtain for the low priority items. Therefore, we focus on 

low priority items in this chapter. 

The remainder of this chapter is structured as follows. In section 7.2, we deal with the 

variant with non-preemptive priorities. We present the equilibrium equations for the 
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continuous time Markov chain and we show how we can solve these equations exactly. Also, 

we discuss the calculation of performance measures from the steady state probabilities. In 

section 7.3, we do the same for the variant with preemptive priorities. We present numerical 

results using our methods in section 7.4, where we focus on the percentage of high priority 

jobs that are outsourced and the number of items in the system. We state our conclusions in 

section 7.5.  

 

7.2 Non-preemptive priorities 

7.2.1 Model and notations 

In this section, we consider a model where customers are processed according to a non-

preemptive priority rule, That is, a high priority item is outsourced if there is no server 

available on arrival. We denote the number of item classes with high (low) priority by Nh 

(Nl). High priority jobs from subclass i arrive according to a Poisson process with rate h
iλ  

and low priority jobs from subclass j arrive with rate l
jλ . The service times of the subclasses 

are exponentially distributed with rates h
iµ  and l

jµ  for high and low priority item classes, 

respectively. All servers are equal, and if multiple servers are available to process a job, each 

available server has an equal chance to get this job. We use h
iρ , l

jρ  to denote the utilisation 

rates of high and low priority item classes in the system. We denote the total number of high 

priority items by n and the number of high priority items of type i by ni. For low priority 

items, we will use the notation m and mi respectively. 

To characterise the system state, we define the following vectors: 

hs  and ls  – vectors with dimensions Nh and Nl containing the number of high and low 

priority items in standard (not outsourced) service per item class. 

lw  – vector with dimension Nl containing the number of low priority items in the 

queue per item class. 

We describe the system state as a vector ( , ,h l ls w s ) and the corresponding state 

probabilities by ( ), , ,h l l
n mP s w s . We define ( ), , 0h l lP s w s =  if one of the components of 

,  and/or h l ls w s  is negative. Note that the vector hw , the high priority items in queue, 
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vanishes because all these items are outsourced if they cannot be served immediately. 

Further, we will use some general notation as in the previous chapter (section 6.2.1): 

We describe the system state probabilities as ( ), ,h l lP s w s  = ( ), ,l h lP w s s′ × 

Pr{distribution of high priority items in queue over subclasses = lw | number of high priority 

items in queue = lw }. The expression ( ), ,l h lP w s s′  describes the probability that the 

system is in the state ( ), ,l h lw s s . Because it holds that l lw m s= − , we can omit the first 

vector parameter and substitute ( ), ,l h lP w s s′  by the notation ( ), ,h l
n mP s s . Then, we can 

rewrite the equilibrium equations for the states with m > k using the product form: 

 

( ) ( ) ( ),
1

, , ! ,
!

l
i

l
wl

N ih l l l h l
n ml

i i

a
P s w s w P s s

w=

= ∏   (7.1) 

 

where n corresponds to the number of high priority items in standard service and m to the 

total number of low priority items in the system. 

7.2.2 Equilibrium equations 

Now we define the equilibrium state equations for the continuous time Markov chain. 

Neighbours of a state ( ), ,h l ls w s  with n clients of high priority and m clients of low priority 

are states to/from which a one-step transition is possible, either by an item arrival or by a 

service completion. According to the numbers n and m of items in the system, the system 

states (so the equilibrium equations) can be divided into two areas (see Figure 7.1): 
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Figure 7.1 Two sets of probability states 
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I. all servers are busy (n + m > k, n ≤ k), 

II. there is at least one server available (n + m < k), 

Note that the states with n > k have zero probability, because outsourcing means that 

high priority jobs cannot wait in the queue. As a consequence, the analysis is simplified 

compared to the priority model without outsourcing as described in Chapter 6. Being 

outsourced, a high priority item does not influence the system anymore. A low priority item 

may enter service after the next job completion, even if high priority jobs are outsourced.  

Let us now define the equilibrium equations for both areas as shown in Figure 7.1. 

Further, we separately address the equations for the boundary between the two regions (m + n 

= k). 

In area I (m + n > k, n ≤ k), all servers are occupied and there is no high priority item in 

the queue due to outsourcing. Transitions out of the state ( ,h ls s ) occur if:  

(1) a low priority item arrives, 

(2) a (high or low priority) item in service leaves the system. 

A high priority item arriving is immediately outsourced, so it does not influence the system 

state. The transitions to the state ( ,h ls s ) from its neighbours are  

(3) the arrival of a low priority job that enters the queue, 

(4) a service completion of a (high or low priority) item type i, so a new service of a low 

priority item type j is started; note that subclass j is at the front of the queue with 

probability 1

1

l
j
l

w

w

+

+
.  

Then, the equilibrium equations are: 

 

( )( ) ( ) ( )

( ) ( )
1

1 1

, , , = , ,

1
                                              1 , ,

1

1
                                              1

1

l

h l

N
l ll h l h l l h l l

i i
i

lN N
j h h h l lh l l

i i i j jl
i j

l
j l

il

µ s s P s w s P s w e s

w
s P s e w e s e

w

w
s

w

λ
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= =

Λ + −

+
+ + + + −

+

+
+ + −

+

∑

∑∑

( ) ( )
1 1

, ,
l lN N

l l l l lh l l
ij i j i j

i j

e P s w e s e eµ
= =

+ + −∑∑

(7.2) 
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To reduce the dimension of the state space, we divide these equations by kµ and replace 

( ), ,h l lP s w s  by expression (7.1). This leads us to 

 

( )( ) ( ) ( )

( )( ) ( )

l
, , 1

1,
1 1

1 , ,  = ,

1                                                       1 1 ,

1                                                       

h l

l h l h l h l
n m n m

N N
h h l h lh l
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i
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δ
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+

∑∑
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1 1

1 1 ,
l lN N
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These equations can be rewritten in vector form as:  

 

1 1
l

t t tγρ − += +DP P GP   (7.3) 

 

In this equation, the matrices D  and G  are defined by 
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The dimension of the vector tP  for t k>  equals  

 

( ) ( )
( )

1 !
dim ,

1 ! !

h l

t h l

N N k
t k

N N k

+ + −
= >

+ −
P  

 

In area II (m + n < k), there is no queue, and so the vector lw  is equal to zero. 

Transitions out of the state ( ,h ls s ) occur if: 

(1) a (high or low priority) item arrives, 

(2) a (high or low priority) item in service leaves the system. 



178 Chapter 7 – Multi-class M/M/k priority queue with outsourcing 

The transitions to the state ( ,h ls s ) from its neighbours are: 

(3) the arrival of a (high or low priority) job that enters a free server, 

(4) the service completion of a (high or low priority) item type i. 

Then, the equilibrium equations are: 

 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1

1 1

, ,0, = ,0, ,0,

1 ,0, 1 ,0,

h l
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N N
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N N
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s P s e s s P s s e

λ λ

µ µ
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+ + + + + +

∑ ∑

∑ ∑
 

 

These equations can be rewritten in a matrix form as: 

 

1 1t t t t t t− += +D P FP G P   (7.4) 

 

where the matrices ,  and t t tD F G  for  t k≤  are defined by 
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The dimension of the vector tP  is equal to  
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Finally, we specify the equations for the border between area I and area II (m+n = k). 

Then, all servers are occupied and the queue is empty. Transitions out of the state ( ,0,h ls s ) 

occur if 

(1) a low priority item arrives, 

(2) a (high or low priority) item in service leaves the system. 

Similarly to area II, a high priority item arriving is immediately outsourced, so it does not 

influence the system state. The transitions from the neighbours of the state ( ,0,h ls s ) are: 

(3) the arrival of a (low or high) priority job that enters service, 

(4) a service completion of a (high or low priority) item type i while there is one low 

priority item type j in queue, so a new service of that low priority item is started. 

Now, the equilibrium equations are: 
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This equations can be written in matrix form as: 

 

1 1k k k k− += +DP F P GP   (7.6) 

 

where the matrices ,  and kD G F  are equal to those introduced before. 

7.2.3 Solution of the equilibrium equations 

The matrix equilibrium equation (7.3) can be solved via the quadratic eigenvalue equation  

 
2 lz zγρ = −D G   (7.7) 

 

as it is described in Chapter 3. In this case, the vector tP  can be written in product form as  

 



180 Chapter 7 – Multi-class M/M/k priority queue with outsourcing 

( )t k
t k

− −=P Z P  

 

where 1−= ΞΩΞZ , Ω  is the matrix containing the eigenvalues of equation (7.7) that exceed 1 

and Ξ is the matrix containing the eigenvectors corresponding to these eigenvalues. The 

matrix G  in this equation has a special structure, since in its definition the terms  
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refer to the same hs and the terms  
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refer to the "upper triangular" indices with 1h h h
is e s+ = + . Then, due to the fact that the 

matrix D  is diagonal, the eigenvalue equations decompose with respect to each hs . Each of 

these decomposed equations has the same structure as the equations for the multi-class queue 

without priorities (cf. Chapter 3). That is, we can apply the same theory and thus we obtain 

exactly dim( tP ) real eigenvalues greater than 1. 

The equations (7.4) for i ≤ k have a different dimension for different t and they can be 

solved recursively as in the previous sections. That is:  

 

1t t t−=P Q P  

 

where ( ) 1
1t t t t t

−
+= −Q D G Q F  and 1

k kZ −=Q F . We find the probability of an empty system 

P0 from ( )
, ,

, , 1
h l l

h l l

s w s

P s w s =∑ , which yields 

 

( )
111

0 1 1 1 1 1 11 , , ,k k k kP
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−−
− −

 = + + + + −  
1 1 1 IQ Q Q Z Q Q  

 

Here t1  is a vector of dimension  
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( )
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dim( )
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h l
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t k
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+ + −
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+ −
1  

 

with all components equal to 1. For t > k, we introduce t k k> =1 1 . 

7.2.4 Performance measures 

Since we can now calculate any system state probability exactly, we can also find the exact 

value of any related performance measure. As examples, we discuss the probability of high 

priority items to be outsourced, the mean number of low priority items in the queue and the 

first two moments of the number of low priority items in the system. Note that we can easily 

calculate the first two moments of the number of high priority items in the system (in own 

repair and outsourced) if the service times for own and outsourced repair are identical. Then 

the high priority items behave as in a M/M/∞ queue, and so we can use the well-known result 

that the number of high priority items of type i in the M/G/∞ queue is Poisson distributed 

with mean /i iλ µ , see Palm (1938). If the own repair rate and outsourced repair rate are 

different, we can still simply calculate the throughput time distribution and the mean number 

of high priority items in the system from the steady state probabilities. However, it is not 

straightforward to derive the second moment of the number of high priority items in the 

system, because the number of high priority items in own repair and being outsourced are 

correlated. 

The outsourcing probability is the probability that an arriving high priority item finds 

all servers busy. This probability can be expressed as follows:  

 

( ) 11,h
i i k koutP a

−−= −1 I Z P   

 

The mean number of low priority items of subclass i in queue (area I) can be estimated via 

the total number of items in queue as follows: 
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Then, we can write down the mean total number of low priority items in queue as 
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The mean number of items of subclass i in queue is equal to  

 

( ) 21 1,l l
i i k kE q a

−− −  = −  1 I Z Z P  

 

The mean number of items of subclass i in the system, denoted by l
iR , equals the mean 

number of items in queue plus the mean number of items in service l l
i iλ µ , since we deal 

with non-preemptive priorities. Then, the mean number of items in the system is: 

 

( ) 21 1,
l

l l i
i i k k l

i

E R a
λ
µ

−− −  = − +  1 I Z Z P  

 

The second moment of l
iR  can be found in a similar way (cf. Chapter 6):  

 

( ) ( ) ( ) ( ) ( )2 2 2

2 3
,

,
l l l

i i i

l l l l l l l
i i i i i i i

w s s

E R w s P w s s P s  = + +   ∑ ∑  
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We calculate the first sum as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
2

2 2 2

2 2 2 2
, , , ,

2 3 21 2 1 1

2 11 1 1 1

, , 2 , ,

2 , ,

2 , ,

l l l l l l l l
i i i i i i i i

ll ii

l l l l l l l l l l l l l l
i i i i i i i i i i i i i i

w s w s w s w s

l l l
i i k k i k k

sl s
i k k k k

w s P w s w P w s s w P w s s P w s

a a a

a χ χ

− −− − − −

− −− − − −

+ = + +

= − + −

+ − + −

∑ ∑ ∑ ∑

1 I 1 I

I I

Z Z P Z Z P

Z Z P Z Z P

 

Here we use 
l

is
t kχ >  for a vector with the same dimension as the vector kP  and with 

components equal to the numbers of items in the service in the corresponding system states. 

The second sum is  

 

( ) ( ) ( )22

3
1

,
l

i

l
i

k sl l
i i t t

ts

s P s χ
=

=∑ ∑ P  

 

This give us an expression for the second moment of l
iR : 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2

2 2 3 21 2 1 1

2 11 1 1 1

1

2 , ,

2 , , ,
l ll i ii

l l l l
i i i t k k i t k k

ks sl s
i t k k t k k t t

t

E R a a a

a χ χ χ

− −− − − −
> >

− −− − − −
> >

=

  = − + −  

+ − + − + ∑

1 I 1 I

I I

Z Z P Z Z P

Z Z P Z Z P P
 

 

 

7.3 Preemptive priorities 

7.3.1 Model 

In this section, we discuss a variant with preemptive priorities of the model in the previous 

section. This is also a variant of the model without outsourcing as presented in Chapter 6. 

Compared to the latter model, outsourcing reduces the state space, and therefore we find a 

simpler way to solve the equilibrium equations. 

In the case of preemptive priorities, we extend the system state description from the 

previous section with a vector of postponed low priority items, lr . We need this vector, 

because item types with a longer processing time will be withdrawn (postponed) more often, 
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and so their throughput times are affected more than those of item types with a shorter 

processing time. So, we describe the system state by a set of vectors , , ,h l l ls w s r  that contain 

information on the number of items of each class in standard (not outsourced) service 

( ,h ls s ), the number of postponed items ( lr ) and the number of items in queue ( lw ) for each 

item type. Analogously to the previous section, we describe the state probabilities as  

 

( ) ( ) ( ),
1

, , , ! , ,
!

l
i

l
wl

N ih l l l l h l l
n ml

i i

a
P s w s r w P s s r

w=

= ∏  (7.8) 

 

7.3.2 Equilibrium equations 

Again, we discuss the equilibrium equations per area as shown in Figure 7.1.  

In area I (n ≤ k, m + n > k), all servers are occupied and there is no high priority item in 

the queue. Transitions out of the state ( , , ,h l l ls w s r ) occur if 

(1) a low priority item arrives that enters the queue, 

(2) a high priority item arrives that can enter service immediately, thereby postponing a 

low priority item in service (only if n < k, otherwise the high priority item is 

immediately outsourced and so the system state does not change), 

(3) a (high or low priority) item in service leaves the system. 

The transitions to the state ( , , ,h l l ls w s r ) from its neighbours are: 

(4) the arrival of a low priority job that enters the queue, 

(5) the arrival of a high priority job that preempts one of the low priority items with 

probability 1

1

l
j
l

s

s

+

+
 and that enters the service, 

(6) the service completion of a (high or low priority) item type i, so a new service of a 

low priority item type j is started; note that subclass j is at the front of the service with 

probability 1

1

l
j
l

w

w

+

+
 or 1

1

l
j
l

r

r

+

+
 if there are postponed items. 
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Then, we can write the equilibrium equations in vector form:  

 

1 1t t t− += +DP FP GP   (7.9) 

 

In this equation, the matrices ,  and t t tD F G  are defined by 

 

( ) ( )( ), , 1 , , ,h l l h h l h l h l l
t ts s r I s k s s s s rρ γρ δ   = + < + +   DP P  

1 1
1 1
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 + + + + − 

+
 + + − + + − + +
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∑∑
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∑∑

GP P
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( )( ) 1
1 1

1 1 , ,0
l lN N

l l l l l lh l
ij i j t i j

i j
e a s s e eδ +
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Here I(x) is the indicator function that equals 1 if x is true and 0 otherwise. The dimension of 

the vector tP  for t > k does not depend on t. It can be derived from the number of all 

combinations of Nh + Nl items on k servers including all combinations of j postponed items, j 

≤ n ≤ k, i.e.: 

 

( )
0

1 1 1
dim ,

h l hk k

t
i n i

N n N k n N i
t k

n k n i= =

     + − + − − + −
= >     

−      
∑ ∑P   

 

In area II (n ≤ k, m + n < k), the queue is empty. So, the vectors lw and lr  are equal to zero. 

Transitions out of the state ( ,0, ,0h ls s ) occur if 

(1) a (low or high priority) item arrives that enters service immediately, 

(2) a (high or low priority) item in service leaves the system. 



186 Chapter 7 – Multi-class M/M/k priority queue with outsourcing 

Transitions to the state ( ,0, ,0h ls s ) from its neighbours are specified by 

(1) the arrival of a (high or low priority) job that enters a free server, 

(2) the service completion of a (high or low priority) item type i. 

Now, the equilibrium equations are: 

 

1 1t t t t t t− += +D P F P G P   (7.10) 

 

where the matrices ,  and t t tD F G  for t k≤  are given by 

 

( )( ), ,0 , , ,0h l h l h l h lt
t t tks s s s s sρ γρ δ   = + + +   D P P  

1 1 1
1 1
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i i
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     = − + −     ∑ ∑FP P P  
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1 1
1

1
1

1, ,0 1 1 , ,0

1 1 1 , ,0

h
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N
h h hh l h l

t t i i t i
i

N
l l lh l

i i t i
i

s s s s e s
k
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k

δ

δ

+ +
=

+
=
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∑

∑

G P P

P
 

 

The dimension of the vector tP  is equal to  

 

( ) ( )
( )

1 !
dim ,

1 ! !

h l

t h l

N N t
t k

N N t

+ + −
= ≤

+ −
P  

 

Finally, we specify the equations for the border between area I and area II (m + n = k). 

Then, all servers are occupied and the queue is empty. Transitions out of ( ,0, ,0h ls s ) occur 

if: 

(1) a low priority item arrives that enters the queue, 

(2) a high priority item arrives that can enter service immediately, thereby postponing a 

low priority item in service (only if n < k, otherwise the high priority item is 

immediately outsourced and so the system state does not change), 

(3) a (high or low priority) item in service leaves the system. 
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The transitions to the state ( ,0, ,0h ls s ) from its neighbours are: 

(1) the arrival of a (low or high) priority job that enters service immediately, 

(2) a service completion of a (high or low priority) item type i while there is one low 

priority item type j is in queue, so a new service of that low priority item is started. 

Now the equilibrium equations are: 

 

1 1k k k k− += +DP F P GP   (7.11) 

 

with ,  and kD G F  as before. 

7.3.3 Solution of equilibrium equations 

Again, the matrix equilibrium equation (7.9) can be solved via the quadratic eigenvalue 

equation  

 
2z z= −F D G ,  (7.12) 

 

as in the previous section. In this case, the vector tP  can be written in product form as  

 
( )t k

t k
− −=P Z P  

 

where 1−= ΞΩΞZ  with Ω  a matrices containing the eigenvalues of the equation (7.12) that 

are greater than 1 and Ξ  a matrix containing the eigenvectors corresponding to those 

eigenvalues.  

This equation has a similar structure to the one for multi-class queue without priority 

rules (Chapter 3). That is, we can apply the same theory and we obtain that they have exactly 

dim( tP ) real eigenvalues greater than 1. 

The equations (7.10) for t ≤ k have different dimensions for different t and can be solved 

recursively as in the previous sections. That is:  

 

1t t t−=P Q P  
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where ( ) 1
1t t t t t

−
+= −Q D G Q F  and 1

k k
−=Q Z F . The probability of an empty system P0 is 

found from ( )
, ,

, , 1
h l l

h l l

s w s

P s w s =∑ , which yields  

 

( )
111

0 1 1 1 1 1 11 , , ,k k k kP
−

−−
− −

 = + + + + −  
1 1 1 IQ Q Q Z Q Q  

 

where t1  is a vector with all components equal to 1, as before. 

7.3.4 Performance measures 

Now that we have the exact state probabilities, we can also derive a variety of performance 

measures exactly. Similar to section 7.2, we discuss the outsourcing probability for high 

priority items, the mean number of low priority items in queue and the first two moments of 

the number of low priority items in the system. For the number of high priority items in the 

system, we can use the result for the M/G/∞ queue again if the service times for own and 

outsourced repair are identical, see section 7.2.4. 

The probability to be outsourced is the probability that the arriving high priority item 

finds all servers busy. This probability can be expressed as follows:  

 

( ) 11,h
i i k koutP a

−−= −1 I Z P   

 

The mean number of items of subclass i in queue (area II) can be estimated via the total 

number of items in queue as follows: 

 

( ) 21 1,l l
i i t k kE q a

−− −
>

  = −  1 I Z Z P  

 

The mean number of items of subclass i in the system equals the mean number of items in 

queue, in service and postponed. The number of postponed items can be derived as in section 

7.2.4 using the vector
l

ir
kχ :  
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( ) 11 1,
l

il r
i k kE PS χ

−− −  = −  I Z Z P  

 

Here 
l

ir
kχ  is a vector with the same dimension as vector kP  and with components equal to the 

numbers of postponed items in the corresponding system states. 

Together with the mean number of low priority items in service ( l l
i iλ µ ), this gives us 

an expression for the mean total number of items in the system: 

 

( ) ( )2 11 1 1 1, ,
l

i

l
l l r i

i i k k k k l
i

E R a
λ

χ
µ

− −− − − −  = − + − +  1 I IZ Z P Z Z P  

 

The second moment of the total number of low priority items of type i in the system, we 

now find to be 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
2

2 2 3 21 2 1 1

2 11 1 1 1

1

2 , ,

2 , , ,
l ll l li ii i i

l l l
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ks rl s r s
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E R a I a

a χ χ χ
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− −++ − − − −

=

  = − + −  

+ − + − + ∑

1 1 I

I I

Z Z P Z Z P

Z Z P Z Z P P
 

 

7.4 Numerical results 

The equations presented in the previous sections are exact. Still, we checked the validity of 

our results by comparison to discrete simulation events. We found no significant deviations.  

In this numerical section, we first examine the impact of outsourcing in section 7.4.1. We 

do this by comparison of model with preemptive priorities and outsourcing (section 7.3) to 

the model without outsourcing (Chapter 6). We do not examine the impact of outsourcing for 

the case with non-preemptive priorities, because as far as we know there are no results for the 

equivalent model without outsourcing, i.e. when the high or low priority class consists of 

multiple item subclasses. In section 7.4.2, we investigate the difference between preemptive 

and non-preemptive priorities in our model with outsourcing. 
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7.4.1 Impact of outsourcing of high priority items 

We consider a queueing system with three servers and three item types. One of the items has 

high priority and two have low priority. The total utilisation rate ρ is fixed to 0.95. We vary 

three parameters: ρh, ( )l hγ µ µ=  and 1 2
l lµ µ . We choose the values 0.5, 1 and 2 for both γ 

and 1 2
l lµ µ  and 0.2 and 0.6 for ρh, thereby obtaining 3×3×2 = 18 model runs. The arrival 

fractions within the group of low priority items are fixed and equal to 1
la  = 0.3 and 2

la  = 0.7. 

The values of 1
lδ  and 2

lδ  are completely defined by the other parameters.  

In Table 7.1, we show the outsourcing probability for high priority items Pout, and the 

expected number of items in the system, l
iE R   , and the expected number of postponed 

items, l
iE PS   , per item subclass. Each cell in the table contains three numbers, referring to 

the high priority item type and the two low priority item types, respectively. Note that the 

number of high priority items in the system includes the items outsourced. Recall that we can 

easily calculate this number from the M/G/∞ queue (see section 7.2.4). We choose this 

definition, because we need the total number of items in process for the application that we 

have in mind (inventory control in spare part networks). Of course, we can also calculate the 

number of high priority items in the own repair from the steady state probabilities.  
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Table 7.1. The impact of outsourcing of high priority items in preemptive priority 

queueing system; each cell in the table contains the performance measure for all item 

classes  

  ρh = 20% ρh = 60% 
l

iE R    l
iE PS    Pout 

l
iE R    l

iE PS    Pout 1

2

l

l
µ
µ

 
γ 

outsr. non-outsr. outsr. non-outsr. outsr. non-outsr outsr. non-outsr

0.60 0.61 0.00 0.00 1.80 2.33 0.00 0.00 
5.73 6.21 0.14 0.14 1.23 4.34 0.24 0.47 0.5 

12.00 13.10 0.15 0.16 

0.02 
– 
– 2.00 8.98 0.27 0.52 

0.18 
– 
– 

0.60 0.60 0.00 0.00 1.80 2.33 0.00 0.00 
6.16 6.74 0.10 0.11 1.33 5.85 0.20 0.40 1 

13.04 14.37 0.11 0.12 

0.02 
– 
– 2.30 12.58 0.23 0.44 

0.18 
– 
– 

0.60 0.60 0.00 0.00 1.80 2.32 0.00 0.00 
7.01 7.78 0.07 0.07 1.55 8.87 0.17 0.33 

0.5 

2 
15.06 16.84 0.08 0.08 

0.02 
– 
– 2.85 19.72 0.18 0.35 

0.18 
– 
– 

0.60 0.61 0.00 0.00 1.80 2.33 0.00 0.00 
4.87 5.31 0.09 0.09 0.93 3.80 0.15 0.30 0.5 

11.37 12.38 0.20 0.21 

0.02 
– 
– 2.17 8.86 0.36 0.69 

0.18 
– 
– 

0.60 0.60 0.00 0.00 1.80 2.33 0.00 0.00 
5.31 5.84 0.06 0.07 1.05 5.32 0.13 0.25 1 

12.39 13.63 0.15 0.15 

0.02 
– 
– 2.45 12.42 0.30 0.58 

0.18 
– 
– 

0.60 0.60 0.00 0.00 1.80 2.32 0.00 0.00 
6.17 6.89 0.04 0.05 1.27 8.37 0.10 0.20 

1 

2 
14.39 16.08 0.10 0.11 

0.02 
– 
– 2.97 19.52 0.24 0.47 

0.18 
– 
– 

0.60 0.61 0.00 0.00 1.80 2.33 0.00 0.00 
4.82 5.27 0.05 0.05 0.76 3.65 0.09 0.17 0.5 

12.30 13.37 0.24 0.25 

0.02 
– 
– 2.42 9.39 0.43 0.83 

0.18 
– 
– 

0.60 0.60 0.00 0.00 1.80 2.33 0.00 0.00 
5.27 5.82 0.04 0.04 0.89 5.20 0.07 0.14 1 

13.32 14.61 0.18 0.19 

0.02 
– 
– 2.69 12.95 0.36 0.70 

0.18 
– 
– 

0.60 0.60 0.00 0.00 1.80 2.32 0.00 0.00 
6.14 6.88 0.02 0.03 1.13 8.27 0.06 0.11 

2 

2 
15.31 17.06 0.12 0.13 

0.02 
– 
– 3.21 20.04 0.29 0.57 

0.18 
– 
– 

 

From Table 7.1, we see that the mean numbers of items in the system as well as the mean 

number of postponed low priority items decrease if outsourcing is allowed. The impact of 

outsourcing on the number of items in the system is high, particularly for low priority items 

and for a high utilisation of high priority items (ρh = 0.6). But even if ρh = 0.2, when only 2% 

of the high priority jobs is outsourced, we see some impact on the number of items in the 
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system. The main reason is, of course, the high total utilisation of ρ = 0.95. In that situation, 

the number of items in the system is rather sensitive to changes in the effective system 

utilisation (i.e., the utilisation corrected for outsourcing). Further, we note that the sensitivity 

of the number of low priority items in the system to ( )l hγ µ µ=  and particularly to 1 2
l lµ µ  

is relatively small. 

7.4.2 Comparison between priority and non-priority queues 
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Figure 7.2. Percentage of outsourced high priority items as function of the total 

utilisation ρ.  

 

In this section, we examine the impact of the priority discipline on the number of items 

in the system per class and on the fraction of high priority items that is outsourced. We vary 

the total utilisation ρ in the experiments with Nh = 1, Nl = 2, k = 3, 1 2
l lµ µ  = 0.5, γ = 0.5 and 

ρh = 0.6ρ, ρl = 0.4ρ. In Figure 7.2, we show the percentage of high priority items that is 

outsourced as a function of the total utilisation ρ for both preemptive and non-preemptive 

priorities. The mean number of items in each class as a function of ρ is depicted in Figure 7.3 

for both priority disciplines. 
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Figure 7.3. Mean number of items in the system per class as function of the total 

utilisation ρ in case of preemptive (left) and non-preemptive (right) priorities. 
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Figure 7.4. Effective repair shop utilisation in case of preemptive (left) and non-

preemptive (right) priorities. 

 

From these figures, we see that the priority discipline can have a significant impact on 

the system performance, especially if the repair shop utilisation is high. The percentage of 

high priority items that is outsourced depends strongly on the priority discipline (Figure 7.2). 

The number of low priority items in the system is not very sensitive to the priority discipline 

if the total utilisation rate is not too high (say ρ ≤ 0.7). Otherwise, preemption leads to 

considerably more low priority items in the system in this example. This is caused by the fact 

that less high priority items are outsourced, and so the effective utilisation of the own repair 

shop is higher, see Figure 7.4. Further, we see from Figure 7.3 that the number of high 

priority items in the system is completely insensitive to the priority discipline as they should. 

Referring to our application on spare part inventories, we conclude that the priority discipline 
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may have a significant impact on the inventory requirement of low priority items (which is 

related to the number of items in the queueing system) if the repair shop utilisation is 

relatively high. 

 

7.5 Conclusions  

In this chapter, we presented an exact method to analyse the multi-class M/M/k priority queue 

with outsourcing of high priority items that cannot be served immediately. We considered 

both preemptive and non-preemptive priorities. From the steady state probabilities, we can 

calculate the commonly used relevant performance measures. We tested our model in a 

numerical experiment and found that both outsourcing and the priority discipline can have a 

major impact on the number of low items in the system if the total system utilisation is 

relatively high. For the application that we had in mind when analysing this model, inventory 

optimisation in spare part networks, this means that the inventory requirements for low 

priority items can be significantly influenced by outsourcing and priority discipline. Thus, 

research question 5 (Chapter 1) is answered completely. 

Finally, we note that we can also use our method to analyse a priority model with 

hyperexponential (Hx) service times and no item subclasses per priority group. In this case, 

we represent each priority class by x item classes with exponential service times and we 

adopt the performance estimators for the total number of items in the system. 

 

 



   

Chapter 8 

Using repair priorities to reduce stock investment  

in spare part networks  

Abstract 

 

In this chapter, we examine the impact of repair priorities in spare part networks. Several 

heuristics for assigning priorities to items as well as optimising stock levels are developed, 

extending the well-known VARI-METRIC method. We model repair shops by multi-class, 

multi-server priority queues. A proper priority setting may lead to a significant reduction in 

the inventory investment required to attain a target system availability (usually 10-20%). 

The saving opportunities are particularly high if the utilisation of the repair shops is high 

and if the item types sharing the same repair shop have clearly different characteristics 

(price, repair time). For example, we find an investment reduction of 73% for a system with 

single server repair shops with an utilisation of 0.90 that handle five different items. In this 

chapter we answer the last research question (question 6) of Chapter 1. 
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This chapter is based on the paper: 

“Using repair priorities to reduce stock investment in spare part networks.” A. Sleptchenko, M.C. 
van der Heijden, A. van Harten. Submitted for publication. 
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8.1 Introduction 

One of the key parameters determining stock levels of repairable items in spare part networks 

is the repair shop throughput time. It is clear that less inventory is needed to obtain a certain 

system availability if the throughput times can be reduced. If a repair shop handles a variety 

of item types and its capacity is limited, we can reduce the throughput times of expensive, 

critical items by giving the corresponding repair jobs high priority. As a consequence, other 

item types having low priority will have to face longer throughput times. This means that 

priority setting leads to reduced stock levels for high priority items and increased stock levels 

for low priority items. This provides us an opportunity for inventory investment reduction 

while maintaining the same system availability: if we choose expensive slow movers as high 

priority items and cheap fast movers as low priority items, the reduction of inventory 

investment in high priority items will probably be more than the increase of investment in 

low priority items. Equivalently, we can increase the system availability with the same 

budget by introducing adequate priority rules. 

In this chapter, we examine the impact of using repair priorities in spare part distribution 

networks. We focus on static priorities, i.e. an a priori assignment of item types to priority 

classes for each repair shop, which is state-independent. We need such priorities, because we 

have to choose stock levels a priori as well. In fact, we focus on logistic decisions at a tactical 

level. At the operational level, one may consider using dynamic priorities additionally. That 

is, we may sequence repair jobs based on the specific system state at a specific point in time. 

For example, we may consider giving high priority to an item for which no stock is available, 

even if it has been classified as low priority originally. Such an operational finetuning of 

priorities can further improve the system performance, but it is out of the scope of our 

research. We will address the following research questions in the remainder of this chapter: 

1) To which extent can we reduce inventory investment using a priori priority setting of 

items?  

2) Which rule should we use to classify items as high priority or low priority? 

3) Which impact has priority setting on the stock levels of individual items? 

To answer these questions, we need (1) an algorithm for assigning priorities to items 

sharing the same repair capacity, and (2) an algorithm for spare part inventory optimisation 

based on these priorities. We will discuss both sequential optimisation and integral priority 
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assignment / stock optimisation. In our approach, we model the repair shops as multi-class, 

multi-server queues with preemptive priorities. Our model contains two priority groups (high 

and low), each consisting of one or more subclasses. Hence priority assignment boils down to 

assigning either high or low priority to each item. To analyse these queueing models, we use 

the method as developed in Chapter 6. Note that our priority assignment heuristics do not 

lead to optimal solutions. Even the case without priorities for capacitated repair shops is 

already that complex, that optimal stock levels cannot be guaranteed except for some special 

cases.  

In the remainder of this chapter, we first explore the potential of repair priorities using a 

variant of VARI-METRIC for given priorities in section 8.2. In section 8.3, we discuss an 

algorithm for integral priority assignment and stock optimisation and a sequential algorithm. 

We compare the various heuristics in a numerical experiment in section 8.4. As performance 

criteria, we use run time and solution quality, that is, the inventory investment needed to 

achieve a target availability. Finally, we give our conclusions in section 8.5. 

 

8.2 The impact of repair priorities 

In this section, we will first discuss how VARI-METRIC can be extended to finite capacity 

repair shops and with job priorities. Using this model, we can then optimise spare part stock 

levels for a given assignment of items to (fixed) priority classes. Next, we will compare the 

inventory investment required for various priority classifications to the investment 

requirements if no priorities are used. In all cases, we consider finite capacity repair shops.  

8.2.1 VARI-METRIC with fixed priority classes 

Similarly to Chapter 4, other queueing models for the repair shops can be embedded in 

VARI-METRIC if the first two moment of the number of items in the queueing system can 

be evaluated. The latter condition is not satisfied for many queueing models that have been 

discussed in the literature. Often, queueing analysis is limited to a few core performance 

characteristics like the mean waiting time and the mean queue length. Even if the variance of 

the queue length can be evaluated, this is not sufficient for use in VARI-METRIC, because 

we need the variance of the total number of items in the system. Note that the number of 

items in queue and the number of items in repair are correlated, so that we cannot simply add 

up both variances. 
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A suitable priority queueing model for our purpose is the multi-class M/M/k priority 

model that has been analysed in Chapter 6, being an extension of the non-priority model as 

has been analysed in Chapter 3. Basic characteristics are: 

• repair jobs are classified in item classes i = 1…I;  

• each item class is assigned either high or low priority; hence we have two priority groups 

that each consist of one or more item classes; 

• repair job arrivals are Poisson distributed with an item class dependent arrival rate λi; 

• repair times are exponentially distributed with an item class dependent service rate µi; 

• all jobs are handled by k identical servers; 

• a low priority job is interrupted if a high priority job arrives finding all servers busy; if 

multiple low priority are in service, we select the job to be postponed randomly with 

equal probabilities. 

In a spare part network, we may have dedicated repair capacity for certain job types. In 

that case, we model each dedicated repair facility as a multi-class M/M/k priority model. 

8.2.2 Comparing priority and non-priority repair shops 

In this section, we will use two variants of VARI-METRIC to examine the impact of repair 

priorities, namely the variant based on a multi-class M/M/k queue without priorities and the 

variant based on the multi-class M/M/k priority queue. Using some numerical experiments, 

we will show that the inventory investment can be reduced significantly if we use repair 

priorities. In this section, we simply optimise stock levels for fixed priority classes and vary 

the priority assignment in our experiments to see the impact of proper priority setting.  

We use the two-indenture product structure and the two-echelon distribution structure as 

shown in previous chapters (e.g. Figure 5.3). The network consists of one central depot and 

four frigates. On each frigate, two pumps are installed (A and B). A frigate is available if both 

pumps are in operation. The pumps have two critical parts each. For pump A, these are a 

valve and a piston and for pump B these are a flange and a piston. The failure rates of pump 

A and pump B are 10 and 15 failures per pump per year, respectively. The failure cause for 

pump A is either the valve (with probability 0.3) or the piston (with probability 0.4) or there 

is a combination of factors, meaning that the whole pump has to be repaired or replaced (with 

probability 0.3). For pump B, the failure causes are 0.4 for both the flange and the piston and 

0.2 for the pump itself. Repair shops are present at the depot and the frigates. Every repair job 
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can be repaired at the frigate with probability 0.2 (simple repairs), whereas it should be 

forwarded to the depot with probability 0.8 (complex repairs). The order-and-ship time 

between depot and frigates is zero for all items. Table 8.1 shows the item prices and the mean 

repair times. The mean repair times are expressed relatively to the mean repair time of pump 

A. Because we will vary repair shop capacities and utilisation in our experiments, we will 

choose the repair time of pump A such, that a given utilisation is reached. 

 

Table 8.1. The relative mean service times and item prices 

Item Pump A Pump B Valve Flange Piston

Mean service time E[Si] relative to 
the mean service time of pump A 1 2 2 4 3 

Prices (euro) ci 5000 7100 200 300 500 

 

We vary the following parameters in our experiments: 

1. The assignment of items to repair shops: (a) all items are assigned to the same repair 

shop, so we have a single five-class repair shop at all locations, (b) one repair shop is 

dedicated to pump A and pump B (two-class model) and one repair shop is dedicated to 

the valve, the flange and the piston (three-class model).  

2. The assignment of items to priority classes. We consider all options, so we have 25-1 = 31 

options for a single five-class repair shop and (22-1)*(23-1) = 21 options for the 

combination of a two-class and a three-class repair shop. Note that we subtract one 

option per repair shop, because it does not make a difference whether all items have high 

priority or all items have low priority. 

3. The number of servers per repair shop: k = 1 or k = 3. 

4. The repair shop utilisation: ρ  = 0.8 or ρ  = 0.9. 

All repair shops in the system have the same number of servers and the same utilisation. 

We vary the number of servers and the utilisation in our experiments, because these 

parameters appeared to be critical in the finite capacity analysis presented in Chapter 4. Other 

parameters, such as failure rates, the number of echelons and indenture levels, appear to be 

less crucial. In the same paper, it is also shown that the impact of finite capacity is especially 
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high if the utilisation is high. Therefore, we do not include low utilisation rates in our 

experiments. 

In Table 8.2, we show the key results of our numerical experiments.  

Table 8.2. Investments in inventories (x 1000 euro) for different combinations of 

priorities, number of servers and utilisation rates 

One five-class repair shop One two-class and  
one three-class repair shop Priority per item  

(L= low, H=high) 
ρ = 0.8 ρ = 0.9 ρ = 0.8 ρ = 0.9 
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k = 1 k = 3 k = 1 k= 3 k = 1 k = 3 k = 1 k = 3 
No priorities 326 328 697 697 517 539 1090 1110 

L L H L L 346 341 732 727 516 537 1094 1112 
L L L H L 404 396 882 877 534 555 1125 1142 
L L H H L 429 416 943 932 537 558 1133 1151 
L L L L H 420 412 917 913 515 536 1081 1104 
L L H L H 449 434 987 978 515 536 1083 1102 
L L L H H 574 563 1318 1313 535 552 1144 1166 
L L H H H 625 614 1490 1478     
H L L L L 235 245 473 486 452 479 919 941 
H L H L L 244 253 494 505 452 479 919 942 
H L L H L 310 304 633 624 476 490 976 986 
H L H H L 329 319 680 669 480 500 990 997 
H L L L H 308 311 641 631 448 475 901 928 
H L H L H 333 329 684 679 439 473 892 918 
H L L H H 449 442 1006 995 475 499 1025 1055 
H L H H H 498 494 1151 1141     
L H L L L 236 246 468 473 640 643 1344 1335 
L H H L L 252 258 495 499 641 644 1353 1338 
L H L H L 317 315 650 633 653 657 1387 1371 
L H H H L 351 336 714 699 663 663 1412 1395 
L H L L H 318 320 652 643 638 640 1332 1317 
L H H L H 352 345 726 719 637 641 1341 1328 
L H L H H 495 491 1148 1147 646 649 1357 1353 
L H H H H 559 568 1417 1410     
H H L L L 125 148 190 212     
H H H L L 132 153 201 219     
H H L H L 189 191 290 305     
H H H H L 204 219 333 343     
H H L L H 171 185 251 268     
H H H L H 183 205 286 304     
H H L H H 293 318 543 573     

Savings 62% 55% 73% 70% 15% 12% 18% 17% 
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The first line contains the inventory investment that is required to obtain an average 

availability of 95% if all items have the same priority. We show the investment 

corresponding to the best priority assignment in bold figures. Note that the investment 

reductions are only comparable within the same column and not between columns. The 

reason is that the item repair times vary between columns, because these times are chosen 

such, that the specified utilisation rate is attained for the given assignment of items to repair 

shops and the given number of servers k. Further, some of the assignments of items to priority 

classes are not relevant for the two-repair shop experiments, because it does not make a 

difference whether all items within a repair shop have high priority or all have low priority. 

Therefore, some of the cells in Table 8.2 are empty. 

From Table 8.2, we see that proper priority setting may reduce the inventory investment 

requirement substantially (12%-73%). The investment reduction decreases with the number 

of servers and increases with the repair shop utilisation rate. However, the impact of the 

assignment of items to repair shops is dominant. The potential investment reduction is 

particularly high if items with clearly different characteristics share the same repair capacity. 

In that case, the increase in stock investment for (cheap) low priority items is much less than 

the decrease in stock investment for (expensive) high priority items. The latter is illustrated in 

Table 8.3, that shows the modification in stock levels per item at both the depot and each 

frigate if the optimal priority assignment is used compared to a non-priority system. We only 

present the results for 1 server and utilisation 0.9, but the results for the other cases are 

similar. 

We see that the stock levels of high priority items decrease and those of low priority 

items increase, as expected. The main cause for the huge investment reduction if all items 

share the same repair capacity is the difference in item costs. For example, the number of 

pumps B on stock decreases from 4 (frigates) x 13 + 1 (at depot) = 53 pumps to (3 x 2 + 1 x 

3) + 0 = 9 pumps. The investment reduction is 44 x 7100 euro = 312.400 euro. Similarly, we 

see that we save 230.000 euro on the other high priority item, pump A. Although the stock 

levels of the low priority items increase significantly, these are all cheap, so that we need 

only 45.500 euro additional investment in valves, flanges and pistons. As a consequence, the 

investment reduction is 496.600 euro.  
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Table 8.3. Comparison of stock allocation between the optimal priority system and a 

non-priority system (c=1, ρ = 0.9); the mark * means that one frigate gets one additional 

item on stock in the optimal solution to obtain an average system availability of at least 

0.95. 

 Location → Depot Frigates 

Repair shop structure 
Item →
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No priorities 1 1 6 10 13 13* 13 4 7 9One five-class repair 
shop Optimal priorities 0 0 8 15 21 2 2* 9 15 22

No priorities 2 3 6 10 13 21* 20 7 13 17One two-class and 
one three-class repair 
shop Optimal priorities 1 4 2 24 3 4 25* 3 33 5

 

Note that the reduction in pump investment is also high compared to the increase in 

investment in cheap items, because the repair times of pumps are shorter in these examples 

(see Table 8.1). Therefore, the delay of low priority items is not too much. Intuitively, it is 

clear that item costs and mean repair times are important parameters influencing investment 

reduction because of priority setting. Giving high priority to items with a relatively small 

repair time has a similar impact as using the Shortest Processing Time (SPT) rule: the 

average number of items in the system decreases.  

 

8.3 Integral priority assignment and stock optimisation 

Finding an optimal assignment of items to priority classes and determining the corresponding 

optimal stock levels is a very complex problem because of the large number of integer 

decision variables and the complex relation between stock levels and backorders. As 

discussed in the previous sections, the latter relation includes complex queueing models for 

each finite capacity repair shop. Therefore, we will discuss two heuristic optimisation 

approaches in this section: 

• nested optimisation, i.e. we optimise the stock levels for each priority assignment 

considered; 

• sequential priority assignment and stock optimisation (decomposition). 
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8.3.1 Nested optimisation  

A straightforward method to optimise priority assignment and stock levels is to extend 

VARI-METRIC with priority assignment. VARI-METRIC subsequently adds stock for those 

items at those locations that give the highest improvement in the goal function (mean 

backorders) per invested dollar. It is difficult to mix the stock level decision with priority 

assignment, because changing priorities requires a new stock optimisation. However, we can 

construct a layer of priority assignment around the VARI-METRIC stock optimisation 

procedure. This leads to the following nested optimisation heuristic: 

Nested stock optimisation and priority assignment 

1. Initialisation: Set all item priorities at all repair shops equal, at the low level; optimise 

stock levels for equal priorities according to Chapter 4. 

2. Priority improvement: Examine the impact of assigning high priority to a single item that 

is currently low priority for all repair shops while keeping the same priority for all other 

items: 

a. Re-optimise the stock levels for each modified priority assignment and calculate the 

investment reduction resulting from the modified priority assignment using the 

extended VARI-METRIC algorithm as discussed in section 8.2.1. 

b. Select the priority modification causing the highest inventory reduction; if this 

reduction is positive, implement the new priority assignment and repeat step 2; 

otherwise, keep the previous solution as the optimal one and stop. 

This is a nested optimisation, because all stock levels are re-optimised every time the priority 

assignment is modified. Note that this is a heuristic procedure, because (1) VARI-METRIC is 

generally not an exact optimisation procedure, (2) items are only moved from the low priority 

group to the high priority group and not vice versa; there is no guarantee that this will lead to 

an optimal priority assignment. Still we examine many options for priority assignment and 

stock levels, so that we will probably find a good (although not optimal) solution. Because an 

optimal solution is not possible for most practical problems (even not for a non-priority 

system), it is impossible to give an indication for the quality of the optimisation procedure. 

We can however compare priority optimisation to an optimised system without priorities and 

analyse the investment reduction, see section 8.4. 
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Unfortunately, this procedure may be time consuming, because the number of stock 

optimisations may be excessive. In each iteration, the number of stock optimisations has 

order Nloc × Nitem, where Nloc represents the number of stock locations in the network and Nitem 

represents the number of items (assemblies and subassemblies) in the system. The number of 

iterations clearly depends on the parameters, but cannot exceed Nloc × Nitem, because then all 

items have been moved to the high priority class at all locations. Hence, the algorithm may 

require O((Nloc × Nitem)2) stock optimisations. The number of evaluations of a multi-class 

M/M/k priority queue is bounded by O(Nloc × (Nitem)2). This number is smaller, because we 

only have to evaluate O(Nitem) new priority models for the repair shop where we moved an 

item to the high priority class in the previous iteration. Still, we conclude that the nested 

optimisation approach may take a lot of run time, so that it is only practical for small problem 

instances. Therefore, we search for a faster heuristic. 

8.3.2 Sequential priority assignment and stock optimisation 

The nested optimisation procedure considers many modifications in priority assignment. It is 

clear that a part of these assignments is probably not advantageous, because the item 

characteristics do not justify high priority. For example, items having relatively low costs 

and/or relatively long service times are candidates for low priority rather than high priority, 

as we also concluded from the numerical experiments in section 8.2.2. Therefore, we can try 

to reduce the number of priority modifications under consideration.  

A simple way to reduce the run time needed for the optimisation is to decompose the 

problem in priority assignment and stock optimisation. We first assign items to priority 

classes in each repair shop without considering stock optimisation. Next, we optimise stock 

levels only once for the (heuristically found) priority assignment. An a priori assignment of 

items to priority classes is not straightforward, because it depends on many parameters of all 

items sharing the same repair capacity, such as the total repair shop utilisation, the variation 

in items costs, the variation in mean service times and the variation in arrival rates. Some 

preliminary experiments that we do not discuss here showed that the high priority class may 

use 50-60% of the repair shop capacity in some cases and only 10-20% in other cases. The 

precise relation between the optimal assignment and all relevant parameters is not clear. Only 

the number of servers seems to be less relevant for the optimal priority assignment.  

As a solution, we estimate the impact of priority assignment on investment using a goal 

function that (1) is a good indicator for stock investment and that (2) can easily be evaluated. 

It is clear that stock levels tend to be high (low) if the number of items in the repair shop are 
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high (low). Therefore, we propose to use as goal function for priority assignment the total 

expected costs of being in the system for all job classes in a single server, multi-class priority 

queue, i.e. 
I

i=1
[ ]i i ic h E R∑ , where Ni denotes the number of items of type i in the repair shop, ci 

the costs of item i and hi the holding cost rate for item i. The hypothesis is that the stock 

levels are approximately proportional to the number of items in the systems. Obviously, this 

is not true, but we hope that this indicative goal function is sufficient for priority assignment. 

We will test the validity of this heuristic approach in some numerical experiments (section 

8.4). Note that we may simplify the goal function to 
I

i=1
[ ]i ic E R∑  if the holding cost rate hi is 

the same for all items 

An advantage of this approximate goal function is that we can evaluate it quickly, 

because the state dimension of the M/M/1 multi-class queue remains within reasonable limits, 

see Chapter 4. Because computation times increase significantly if k>1, we propose to 

approximate the system by a single server queue with a server that works k times as fast if the 

actual repair shop has k ≥ 2 servers (only for priority assignment).  

One option of finding the optimal priority assignment for the approximate goal function 

is to enumerate all options and choose the priority assignment with minimum costs. This is 

possible for a moderate number of item classes, say 12 at most (giving 212-1 = 4095 options). 

However, we can also construct a heuristic from Buzacott and Shantikumar's (1993) result on 

the optimal priority assignment in the multi-class M/G/1 model with nonpreemptive 

priorities. They order jobs according to a priority index that is assigned to each class. They 

assume that each class contains one item and proof that ci/E[STi] is the optimal priority index, 

where Si and ci denote the service time and the costs per time unit in the system for item i, 

respectively. That is, the item with the highest index ci/E[STi] should have the highest 

priority. It is not difficult to show that this result is also valid for preemptive multi-class 

M/G/1 model systems (see Appendix B). 

Note that our model is different, because we have two priority groups with multiple items 

(classes) within each priority group. Hence we should not only order items, but also decide 

how many items should be allocated to the high priority group. Based on the result above, a 

reasonable heuristic is to order items according to the index ci/E[STi]. Starting with low 

priority items only, we move items to the high priority class until the cost criterion cannot be 

improved anymore. In the numerical section, we will check the quality of this priority 

assignment heuristic by comparison to a full enumeration of all priority assignments.  
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Summarised, the sequential heuristic consists of the following steps: 

Sequential priority assignment and stock optimisation 

 

1. Priority assignment per repair shop,  

a. Initialisation: 

i) If the number of servers in the repair shop is k ≥ 2, then modify the mean service 

time for priority assignment as E[STi] := E[STi]/k. 

ii) Sort the items in decreasing order of their cost / service time ratio ci/E[STi]. 

iii) Assign low priority to all items in the repair shop. 

iv) Calculate the expected number of items E[Ri] in the M/M/1 multi-class queue for 

each item type i. 

v) Calculate the minimum total expected costs of being in the system for all job 

classes, 
I

i=1
[ ]i ic E R∑ . 

b. Iteration:  

i) Assign high priority to the low priority item i* that is highest on the ordered list. 

ii) Recalculate the expected number of items E[Ri] in the M/M/1 multi-class priority 

queue for each item and the corresponding total expected costs 
I

i=1
[ ]i ic E R∑ . 

iii) If the total costs are less than in the previous iteration, continue with the next 

iteration; otherwise, assign low priority to item i* and stop. 

2. Optimise the stock levels and calculate the investment reduction resulting from the 

priority assignment using the extended VARI-METRIC algorithm from section 8.2.1.  

 

8.4 Numerical analysis 

In this section, we will test both optimisation heuristics. Evaluation criteria are (1) the 

investment reduction obtained compared to a non-priority finite capacity model and (2) the 

computer run time requirements. We conduct three sets of experiments. In the first set, we 

compare the investment reduction obtained using the two heuristics for priority assignment 

and stock optimisation as presented in the previous section. It will turn out that sequential 

priority assignment and stock optimisation (see section 8.3.2) is as good as nested 

optimisation and much faster in most of our numerical experiments. Therefore, we conduct a 

second set of experiments based on sequential optimisation to examine priority assignment in 
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more detail (i.e., experiments in which many items share the same repair capacity). In the 

third set we validate our findings by running experiments for a completely different data set 

as given in Hausman and Scudder (1982). 

8.4.1 Comparing the algorithms for priority assignment and stock optimisation 

The data for our numerical experiments are similar to section 8.2.2, except for the following: 

• We only consider the cases with k = 3 servers, because we see from Table 8.2 that the 

results for k = 1 server are similar. 

• We consider both a two-indenture and a three-indenture system, see Figure 8.1; the item 

costs and the mean service times for the three indenture models are shown in Table 8.4. 

We have two scenarios for the failure causes, see Figure 8.1 (the probability that an assembly 

failure is caused by a specific subassembly is displayed as a number at the connecting link); 

the first scenario is similar to section 8.2.2 with an extension for the three-indenture variant; 

the second scenario is displayed between parentheses. 

 

  

 
Pump A

Flange 

Piston 

Valve 

Pump B
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Gasket 

Ring 
2-indenture system

3-indenture system

 0.6 (0.3) 

 0.4 (0.4) 

 0.2 (0.5)

 0.4 (0.3)

 0.4 (0.2)

 0.3 (0.4)
 0.4 (0.8) 

 0.6 (0.3) 

 0.4 (0.7) 

 

Figure 8.1. The indenture structure with two scenarios for the failure cause 

probabilities 

 

Table 8.4. The relative mean service times and item prices 

Item 
Pump 

A 
Pump 

B
Valv

e Flange Piston Stem Gasket Rod Ring
Mean service time E[Si] 
relative to the mean 
service time of pump A 

1 2 2 4 3 2 4 1 3

Prices (euro) ci 5000 7100 200 300 500 120 60 50 80
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In our first set of experiments, each repair facility is dedicated to the items from the same 

level in the indenture structure. That is, each location has two respectively three (multi-class, 

multi-server) repair shops in the two- respectively three-indenture model. One repair shop is 

dedicated to pump A and pump B, one repair shop is dedicated to the valve, the piston and 

the flange and the third repair shop (only in the 3-indenture model) is dedicated to the other 

items. 

Summarised, we vary three parameters: the number of indentures, the failure cause 

probabilities and the repair shop utilisation rates (i.e., we have 23 = 8 cases). We optimise all 

cases using 4 algorithms: 

1. inventory optimisation without repair priorities; 

2. nested priority assignment and inventory optimisation; 

3. sequential priority assignment and inventory optimisation in two variants: 

a. enumeration of all options in the priority assignment step; 

b. priority assignment based on the priority index ci/E[Si]. 

 

In Table 8.5, we present for the various experiments the stock investment required to 

obtain an average system availability of 95%, the relative reduction using repair priorities and 

the algorithm run time (based on a PC with Pentium-III 800 Mhz processor). Similar to Table 

8.2, investment reductions are only comparable within the same row and not between rows, 

because the item repair times vary between rows (they are chosen such, that the specified 

utilisation rate is attained for the given assignment of items to repair shops). 

We see that the sequential algorithm performs only slightly worse than the nested 

algorithm in terms of investment reduction, whereas it is much faster. Therefore, sequential 

optimisation seems to be an attractive heuristic. The difference between both variants of the 

sequential algorithm are minor, because the number of items per repair shop is always small 

(at most 4).  
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Table 8.5. Inventory investments (x 1000 euro), investment reduction using repair 

priorities and run times for various optimisation algorithms 

Indentures 
Failure 
cause 

scenario 

Utilisation 
Rates 

No 
priority 

Nested 
procedure 

Sequential, 
enumeration 

Sequential, 
priority index

814 716 718 718 
 12.0% 11.8% 11.8% ρ = 0.8 

2 s. 23 m. 52 s.  22 s. 19 sec. 
1667 1381 1387 1387 

 17.2% 16.8% 16.8% 

One 

ρ = 0.9 
8 s. 43 m. 30 s.  23 s. 23 sec. 
822 729 729 729 
 11.3% 11.3% 11.3% ρ = 0.8 

3 s. 25 m. 41 s.  12 s. 11 sec. 
1688 1415 1415 1415 

 16.2% 16.2% 16.2% 

Two 

Two 

ρ = 0.9 
9 s. 45 m. 30 s. 16 s. 17 sec. 
848 751 755 755 
 11.5% 11.0% 11.0% ρ = 0.8 

9 s. 11 h. 17 m. 9 s. 4 m. 44 s. 4 m. 47 s. 
1750 1443 1468 1468 

 17.6% 16.1% 16.1% 

One 

ρ = 0.9 
30 s. 26 h. 16 m. 41 s. 5 m. 47 s. 5 m. 42 s. 
851 748 748 754 
 12.1% 12.1% 11.3% ρ = 0.8 

7 s. 8 h. 11 m. 8 s. 4 m. 14 s. 4 m. 17 s. 
1745 1451 1451 1478 

 16.9% 16.9% 15.3% 

Three 

Two 

ρ = 0.9 
25 s. 23 h. 28 m.35 s. 5 m. 40 s.. 5 m. 33 s. 

Average investment reduction 0.0% 14.4% 14.0% 13.7% 
 

8.4.2 Investigating priority assignment 

To examine the impact of the priority assignment algorithm in more detail, we need to run 

experiments in which more items share the same repair shop capacity. Therefore, we focus on 

the three-indenture models. We only include both variants of the sequential algorithm, 

because the nested procedure requires excessive run times (as can also be seen from Table 

8.5). To keep run times small, we focus on repair shops with k = 1 server. We take scenario 

two for the failure cause probabilities and a repair shop utilisation of ρ  = 0.90. We consider 

four variants for the assignment of items to repair shops: 

1. three repair shops, one for each indenture level (i.e. with 2, 3 and 4 items respectively); 
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2. two repair shops, one for indenture level 1 and 2 and one for indenture level 3 (i.e., with 5 

and 4 items respectively); 

3. two repair shops, one for indenture level 1 and one for indenture level 2 and 3 (i.e., with 2 

and 7 items respectively); 

4. one repair shop for al items (i.e., 9 items sharing the same capacity) 

Table 8.6. Priority assignment, investment reduction and algorithm run times for 

various repair shop structures 

Repair shop 
structure 

Priority 
assignment 

Investment reduction 

(run time) Pu
m

p 
A

 

Pu
m

p 
B

 

V
al

ve
 

Fl
an

ge
 

Pi
st

on
 

St
em

 

G
as

ke
t 

R
od

 
R

in
g 

enumeration 18.5% (23 s.) H L H L L H L H HThree repair shops: 
2, 3 and 4 items ordering 17.1% (23 s.) H L L L L H L H H

enumeration 58.0% (44 s.) H H L L L H L H HTwo repair shops: 
5 and 4 items  ordering 58.0% (13 s.) H H L L L H L H H

enumeration 17.7% (3 m. 33 s.) H L H H L H L H LTwo repair shops: 
2 and 7 items  ordering 17.7% (13 s.) H L L L L L L L L

enumeration 65.9% (56 m. 15 s.) H H L L L L L L LOne repair shop: 
9 items  ordering 65.9% (17 sec.) H H L L L L L L L

We show the results of these experiments in Table 8.6. For both variants of priority 

assignment, we give the investment reduction compared to a non-priority system, the run 

time needed for the optimisation algorithm and the assignment of priorities to items, H(igh) 

or L(ow). 

We see that the investment reduction is almost the same for both enumeration of 

priorities and ordering based on the index ci/E[STi]. Sometimes the assignment of items to 

priority classes is different, but then the investment reduction is almost the same. However, 

priority assignment using ordering is much faster, particularly when many items share the 

same repair shop capacity. Even for repair shops modelled as M/M/1 priority queues with 9 

classes, the run time is still relatively small (17 seconds). Therefore we conclude that the 

sequential heuristic based on the priority index is a suitable heuristic for large models.  

Further, we observe that most investment reduction is possible if the two pumps share 

repair capacity with many cheaper items. Both pumps have relatively short repair times, and 

so repair priority for these pumps diminish the number of pumps in repair (and so the 

required inventories) considerably. Because the pumps are also much more expensive than 
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the other items, this yields a large investment reduction. Hence repair priorities are especially 

attractive if many items with completely different characteristics (item costs, service times) 

share repair shops with a high utilisation. 

8.4.3 Validation of findings  

Because the structure of the data is similar in the previous experiments, our findings may be 

case-dependent. Therefore, we examine whether we find similar results using a different data 

set. To this end, we use the data as provided by Hausman and Scudder (1982) on engines at a 

commercial airline. They construct a simulation model for a three indenture, single location 

model with a single repair facility. All engine failures are caused by failure of one of the 23 

components (third indenture items). The repair facility consists of 10 machines. Each item 

type passes some, but generally not all, machines following an item-specific route. The 

processing time at each machine is deterministic and differs for each item/machine 

combination. Obviously, this model is different from ours. Therefore, we only use the data 

from the repair shop by Hausman and Scudder (1992). We model the repair facility by a 

number of multi-server repair shops that are dedicated to a subset of items. We use the total 

machine times from Hausman and Scudder as mean repair times and we assume that these 

repair times are exponentially distributed.  

We consider five variants for the assignment of items to repair shops, see Table 8.7. As 

we have mentioned in the introduction, our method to analyse priority queues is able to 

handle a limited number of item classes and servers only. Therefore, we are not able to 

consider a single repair shop for all items, which would require a 10-server priority queue, 

where both priority classes have totally 23 subclasses (components). Then the state space 

becomes too large, so new and fast approximations have to be developed to handle such large 

repair shops.  
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Table 8.7. Repair shop assignments and characteristics (numbers of servers and 

utilisation rates)  
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Var. 1 k = 2, ρ = 0.84 k=1, ρ=0.88 k = 2, ρ = 0.91  k = 2, ρ = 0.89  k = 2, ρ = 0.83  

Var. 2 k = 3, ρ = 0.86  k = 2, ρ = 0.91  k = 2, ρ = 0.89  k = 2, ρ = 0.83  

Var. 3 k = 2, ρ = 0.84  k = 2, ρ = 0.73  k = 2, ρ = 0.68  k=2, ρ=0.83 k = 2, ρ = 0.83  

Var. 4 k = 1, 
ρ=0.79 

k = 1, 
ρ=0.90 

k = 1, 
ρ = 0.88 

k = 1, 
ρ = 0.96 

k = 1,
ρ=0.77

k = 1, 
ρ = 0.71 

k=1, 
ρ=0.69 

k = 1, 
ρ=0.78 

k = 1,
ρ=0.74

k = 1,
ρ=0.62

Var. 5 k = 3, ρ = 0.84  k = 3, ρ = 0.73  k = 2, ρ = 0.85  k = 3, ρ = 0.71  

 

In all experiments, we assume that engines fail with a frequency of 0.50 per day. In 

Table 8.8, we present the remaining data for our experiments, i.e. the mean repair times, 

prices and probabilities that a failure is caused by a specific component. The key results are 

presented in Table 8.9. 
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Table 8.8. Prices (x $1000), repair times and cause probabilities of the single-echelon, 

multi-indenture model by Hausman and Scudder [1982] 

Operating units Modules Componets 

Name Price  
(x $1000) 

Name Price  
(x $1000) 

Cause 
prob. 

Name Price  
(x $1000) 

Cause 
prob. 

Mean 
repair 
time 
(days) 

Engine 2000 Module 1 800 0.1667 Component 11 135 0.2903 14.10 
     Component 12 85 0.1936 27.70 
     Component 13 150 0.2903 14.59 
     Component 14 110 0.2258 29.07 
  Module 2 308 0.0833 Component 21 80 0.3333 14.98 
     Component 22 100 0.6000 25.05 
     Component 23 60 0.0667 16.08 
  Module 2 630 0.2500 Component 31 160 0.1026 17.40 
     Component 32 110 0.0256 18.00 
     Component 33 115 0.1538 15.45 
     Component 34 90 0.2308 13.15 
     Component 35 120 0.2051 18.16 
     Component 36 85 0.2308 10.63 
     Component 37 100 0.0513 14.60 
  Module 2 490 0.2778 Component 41 140 0.0800 10.60 
     Component 42 100 0.3200 11.15 
     Component 43 80 0.2000 24.95 
     Component 44 150 0.4000 8.46 
  Module 2 575 0.2222 Component 51 140 0.3200 8.60 
     Component 52 90 0.1600 14.55 
     Component 53 100 0.2400 18.00 
     Component 54 130 0.0800 15.95 
     Component 55 110 0.2000 21.64 
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Table 8.9. Investment reduction using repair priorities with priority assignment for  the 

Hausman and Scudder (1982) example (H=high priority, L=low priority) 

 
Invest. 
Reduc. C

om
p.

11
 

C
om

p.
12

 

C
om

p.
13

 

C
om

p.
14

 
C

om
p.

21
 

C
om

p.
22

 
C

om
p.

23
 

C
om

p.
31

 
C

om
p.

32
 

C
om

p.
33

 

C
om

p.
34

 
C

om
p.

35
 

C
om

p.
36

 
C

om
p.

37
 

C
om

p.
41

 

C
om

p.
42

 

C
om

p.
43

 

C
om

p.
44

 

C
om

p.
51

 

C
om

p.
52

 

C
om

p.
53

 

C
om

p.
54

 

C
om

p.
55

 

Var. 1 17.9% H L H L H L L H L H L L H L H H L H H H L H L

Var. 2 19.9% H L H L H L L H L H L L H L H H L H H H L H L

Var. 3 20.7% H L H L H L L H L H L L H L H H L H H H L H L

Var. 4 11.1% H L H L H L L H L H L L H L H L L H L H L H L

Var. 5 14.7% H L H L H L L H L H L L H H H H L H H L L L L

Price / S.Time 9.6 3.1 10.3 3.8 5.3 4.0 3.7 9.2 6.1 7.4 6.8 6.6 8.0 6.8 13.2 9.0 3.2 17.7 16.3 6.2 5.6 8.2 5.1

 

In this table, we show the investment reduction, the assignment of priorities to items and 

the price / service time ratio. The variants for repair shop assignment are shown using vertical 

lines. That is, all components between two successive vertical lines share the same repair 

shop are assigned. Note that we do not distinguish between the two variants of sequential 

optimisation, enumeration and based on price \ service time ratio, because they give the same 

results in all five experiments.  

We see that the investment reduction is not excessive, because the price/service time 

ratios of items sharing the same repair capacity do not vary too much. Still, we find 10-20% 

investment reduction, similar to the non-extreme cases from the previous sections. As we 

expected, high priority is always assigned to items with the highest price / service times ratios 

in the same repair shop. These results confirm our findings from the previous section. 

8.5 Conclusion 

We showed that repair priorities provide an opportunity to reduce investments in repairable 

spare part networks (usually 10%-20%), especially if the repair shop utilisation is high and 

many items with different costs and repair times share the same repair capacity. We presented 

an algorithm for priority assignment and stock optimisation and we showed that a sequential 

algorithm performs very well in terms of the investment reduction found and algorithm run 

times. We summarised our preferred sequential heuristic at the end of section 8.3.2. With the 

results presented in this chapter, we answered the last research question (Chapter 1). 

 

 





   

Chapter 9 

Conclusions and further research 

Abstract 

 

This chapter summarises the results from this thesis. We present the answers to the research 

questions that we have posed in Chapter 1. Further, we indicate directions for future 

research.  
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9.1 Introduction 

The goal of this thesis is the extension of spare parts inventory models with finite repair 

capacities and repair job priorities and gaining insight in the relations between inventories, 

repair capacities and repair priorities. To this aim, we have formulated six research questions 

(section 1.2.2) concerning the models of the repair shops (questions 2 and 5) and concerning 

the extensions of the spare parts supply models (questions 1, 3, 4 and 6). To be able to answer 

the research questions, we have developed several tools. In the next subsection, we briefly 

discuss these tools. Next, we present our conclusions by answering the research questions 

that we posed in Chapter 1 (9.3). Finally, we provide some directions for further research 

(9.4).  

 

9.2 Tools 

First, we have built a simulation model of the multi-echelon, multi-indenture spare parts 

supply system to validate the mathematical models developed in this thesis. We used the 

simulation software eM-PlantTM (Tecnomatix, 2001) because of its object-oriented nature, 

which allows for easy extension and modification (number of echelons and indentures, repair 

priorities). We used the object classes for the repair shops separately to validate the queueing 

models that we developed. 

Next, using Borland Delphi, we have developed a library of numerical procedures to 

estimate the performance measures of our queueing models. We used these algorithms to 

build a software prototype of VARI-METRIC with finite capacity repair shops. This 

prototype includes the optimisation heuristics for stocks, repair capacities and repair priorities 

optimisation that we proposed in this thesis. 

We used our simulation models and VARI-METRIC prototype to execute several series 

of numerical experiments, which helped us to draw conclusions.    

 

9.3 Conclusions 

Let us present the conclusions of this thesis by answering our research questions: 
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1. Which model for finite capacity repair shops is appropriate to be embedded in the  

(VARI-)METRIC framework (Chapter 2)? 

We examined the requirements for a finite capacity repair shop model that can be embedded 

in the (VARI-)METRIC framework. We chose for the multi-class M/M/k queue to model 

repair shops. In case of repair priorities, we use two priority classes with a fixed assignment 

of items to priority classes per repair shop and a preemptive resume queueing discipline. As 

performance characteristics, we need the first two moments of the number of items in the 

queueing system for each item type. 

2. How do we analyse the selected repair shop model and how do we derive the 

performance characteristics needed for (VARI-)METRIC (Chapter 3)? 

We derived the steady state equations for the multi-class M/M/k queue (FCFS) and we 

presented an exact method to solve these equations. Using the steady state probabilities, we 

can derive the first two moments of the number of items in the system for each item type. 

However, the exact analysis requires solving matrix equations of high dimensions. Therefore, 

we derived approximations with smaller dimensions of the matrix equations. The 

approximations require solving linear equations with dimensions less then or equal to the 

number of item classes. The approximation errors of the mean and variance of the number of 

items in the system are at most 4% and 7% respectively for utilisation rates exceeding 0.85. 

However, the average approximation errors of these two performance estimators in our 

numerical experiments are 1.8% and 3.6% respectively. The errors decrease with the increase 

of repair shop utilisation rate. Finding an exact solution requires the solution of linear 

equations with much higher dimension, which grows with the number of servers.   

3. To which extent can we improve (VARI-)METRIC by introducing our queueing model for 

the finite capacity repair shops (Chapter 4)?  

The queueing results have allowed us to extend the existing (VARI-) METRIC models with 

finite capacity of repair shops and to improve the estimates of the system availability. In our 

numerical experiments, we found that the average absolute deviation between estimated and 

simulated availability is less than 1% and decreases with the repair shop utilisation rate. The 

classical VARI-METRIC method overestimates the system availability with 4.8% on average 

and leads to incorrect stock levels distributions. Our improved VARI-METRIC method 

underestimates the system availability, thereby guaranteeing that the required system 

availability will be reached.  
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Finite repair capacities have also impact on the stock distribution. We have found that 

the stocks of the highest indenture items at the most downstream locations increase with the 

repair shop utilisations. In other words, the stocks are shifting such, that more ready-for-use 

modules are stocked close to the installed base. 

4. How can we choose an appropriate combination of spare part inventories and repair 

capacities (Chapter 5)? 

Having the improved (VARI-)METRIC model, we were capable to include repair capacities 

as decision variables and to allocate budget between spare part inventories and repair 

capacities. For a better optimisation, we have provided a simple procedure to analyse repair 

shops with a non-integer number of servers, representing part time or overtime work. Our 

experimental results have shown that the optimal utilisation of repair shops varies between 

0.8 and 0.95. These utilisation rates increase with the price of servers relative to the price of 

items and with the number of servers. An interesting result is that the optimal distribution of 

budget between inventory and service capacities hardly depends on the prices of repair 

capacity relative to the price of items. That is, the increase in the price of repair capacity 

leads to a decrease in repair capacity and an increase in spare part inventories, but the 

percentage of budget spent to both inventories and capacities remains almost constant.  

5. How do we extend and analyse our repair shop model to deal with repair priorities 

(Chapter 6 and 7)? 

Analogously to the multi-class M/M/k queue, we derived the steady state equations for 

the multi-class M/M/k queue with two priority classes and preemptive priorities, where each 

priority class may consist of item subclasses with different arrival and service rates. To solve 

these equations approximately, we assumed that the probability to have more than t items in 

the queue in total is equal to zero. Then, choosing the parameter t high enough, we obtain 

quite good approximations of the key performance characteristics. Our numerical 

experiments have shown that it is enough to choose t ≈ 20 to obtain an approximation error 

less than 1% for the first and second moment of the number of low priority items in the 

system. We found that the approximations have a higher accuracy for high utilisation rates 

(0.85-0.95). The presented iterative method has also shown good results being applied to the 

multi-class, multi-server queues without priorities, which shows its generality. 

As a side result, we derived an exact solution procedure for a variant in which high 

priority jobs are outsourced if they cannot be served immediately upon arrival (Chapter 7). 
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For this variant, we were capable to analyse both variants with preemptive and non-

preemptive priorities. Further, the approximations provided for the non-priority multi-class, 

multi-server model can also be applied to the multi-class queueing problem with non-

preemptive priorities and with outsourcing.  

6. To which extent can we reduce inventory investment by introducing repair priories, and 

how should we allocate items to priority classes then (Chapter 8)? 

To answer this last research question, we embedded our priority queueing model in VARI-

METRIC and we developed a few heuristics for simultaneous inventory optimisation and 

priority assignment. Using this tool, we could examine the impact of priority assignment.  

From our numerical experiments, we found that repair priorities provide an opportunity to 

reduce investments in repairable spare parts networks. We found the highest investments 

reduction when items with totally different costs and service times characteristics share the 

same repair capacity. An important indicator in this respect is the ratio between the price and 

the mean repair time of an item. In our numerical experiments, we found an investment 

reduction up to 73% when single server repair shops with utilisation of 0.9 are shared by five 

items whose price / service time ratios differ by a factor 67. In these cases, the items with the 

highest price / service time ratio receive high priority and therefore their stock levels can be 

drastically reduced. As a consequence, the total investment reduces drastically as well. 

However, an investment reduction of 10%-20% is more common.  

Further, we used the property that items with high ratio between price and mean service 

time should have high repair priorities to construct a sequential priority assignment / stock 

optimisation heuristic. This heuristic first assigns items to priority classes, minimising the 

total costs of items in repair, and next optimises spare part stock levels once for the chosen 

priority assignment. We found that this heuristic usually provides similar results as a nested 

procedure where the priority assignment is optimised by a local search procedure and stock 

levels are optimised for each step in this local search procedure separately. Usually, our 

sequential heuristic leads to the same inventory reduction compared to a non-priority system. 

In a few cases, the inventory reduction was up to 10% less. On the other hand, our sequential 

heuristic usually does not need too much computation time. For example, the nested 

optimisation procedure requires up to 26 hours on a Pentium III – 800MHz PC for a three 

indenture system with 90% server utilisation, while the sequential procedure finds an 9% 

smaller reduction in 6 minutes.  
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9.4 Further research  

We see possibilities for further research along three lines: (1) further development of multi-

class queueing models (extensions and approximations), (2) further development of VARI-

METRIC with finite repair capacities (extensions and approximations), and (3) other 

applications of multi-class, multi-server queues. We will discuss these three research lines in 

more detail below. 

9.4.1 Multi-class queues 

In this area, we distinguish three research directions.  

First, the analysis of multi-class queues requires the solution of matrix equations with 

high dimensions. Our current approximations are based on finding some of eigenvalues 

without solving the whole eigenvalue problem. However, these approximations are only 

available for the non-priority model and the non-preemptive priority model with outsourcing. 

Besides, the approximations become worse for larger systems (with many servers or priority 

classes) and with lower utilisation rates. Therefore, the first direction of the future research is 

the further development of approximations for priority and non-priority models, particularly 

for larger systems. 

A second research direction is the extension of our model with two priority groups to 

more priority groups. We can extend of the multi-class priority model for preemptive priority 

and without outsourcing using the following approximate approach. The performance of the 

two highest priority groups can be estimated without taking into account lower priority items. 

Next, the performance of lower priority groups can be estimated iteratively by joining all 

groups with higher priority into one class and ignoring other priority groups. We expect that 

this iterative procedure will give a good approximation, although we still have to test it. 

A third direction is to develop a solution for non-preemptive priority queues without 

outsourcing. This will extend the range of processing disciplines, which we can use in our 

spare parts model, and it makes this model more flexible. This priority model is technically 

more complicated than the models as discussed in this thesis and it requires the solution of 

larger matrix equations. 

As a fourth point of further research, we should mention, of course, other possible 

applications of the obtained queueing models different from the application presented here. 

These can be applications in: 

- other supply chain models  

- production systems  
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- telecommunication systems 

9.4.2 VARI-METRIC with finite repair capacities 

Concerning the VARI-METRIC models with finite capacity repair shops, there are four areas 

to be explored.  

First, the analysis of the spare part network model with repair priorities is done for the 

repair shops with a preemptive priority rule and two priority classes. An open issue is which 

further investment reduction is possible using more detailed priorities (more than two priority 

groups).  

Second, we considered a fixed assignment of items to priority classes, because we focus 

on the tactical decision of initial inventory investment. At the operational level, the system 

performance can possibly be improved taking into account information on the specific system 

state at a specific point in time (cf. Hausman and Scudder, 1982; Pyke, 1990). For example, 

the current backorder and inventory levels are relevant when deciding on the next job that 

will be taken into repair. Further research is needed on such operational dynamic priority 

rules and their impact on the system availability, given the stock levels from our static 

priority models. This can be done by testing such priority rules using simulation.  

Third, the outsourcing policy presented in this thesis assumes outsourcing of high 

priority items if they cannot be served upon arrival. One can think of other outsourcing 

criteria, e.g. based on the queue of high priority items or the waiting time that has expired 

since arrival. However, the analysis of such queueing models is not straightforward.  

Fourth, the presented spare parts models do not take into account the specifics of 

preventive maintenance. This is relevant for our finite capacity models if the repair capacities 

are used for both preventive maintenance and corrective maintenance. The timing and 

capacity requirement for preventive maintenance is known in advance within certain limits. 

This is not true for corrective maintenance. Also, corrective maintenance tasks will generally 

be more urgent, cf. Keizers (2000). Preventive maintenance can influence the demand 

process as well, because demands become more predictable.  

Fifth, we have found that the improved VARI-METRIC model still has approximation 

errors for the average system availability in case of high repair shop utilisations. This error is 

caused by correlations between the numbers of items in the pipeline for various item types 

sharing the same repair capacity. Therefore, one of the directions of further research is 

reduction of the approximation error of the system availability.  
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Appendices 

Appendix A. Notations 

The system layout: 

Nech — number of echelons in the system. 

ECH(n)  —  set of locations belonging to the echelon n. 

Nloc — number of locations in the system. 

CUS(m)  — set of customers (supported locations) of location m. 

SUP(m) — the location that supplies items to location m (i.e. the direct supplier of 

location m) 

Nind  — number of levels (indentures) in the item hierarchy. 

IDN(i)  —  set of items belonging to indenture i. 

Nitem  —  number of items in the system.  

SA(j)  —  set of subassemblies of item j. 

AS(j) — set of assemblies, which have item j as a subassembly. 

Repair shop characteristics 

h — repair shop index, 1, , shoph N= … , where shopN  denotes the total number of 

repair shops in the system; 

SH(m)  — set of repair shops at location m; 

shop
mjhp  — probability that item j will be repaired by repair shop h, given that it will be 

repaired at location m; 

mjhλ  — arrival rate of item j at repair shop h at location m. 

mhjST  — repair time of item j at repair shop h at location m, a random variable with 

mean E[ mhjST ] and squared coefficient of variation 2
ST mhjC , where the 
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coefficient of variation is defined as the ratio between the standard 

deviation and the mean 

mhjQ  — number of item j in the repair queue of repair shop h at the location m. 

mhjR  — number of type j under repair (in queue and in service) in repair shop h at 

location m. 

hmk   — number of servers in repair shop h at location m, k  — matrix of all repair 

capacities in the system.  

Routing characteristics 

rep
mjp  — probability that item j can be repaired at location m.  

cause
mjkp  — probability that a failure of item j at location m is caused by a failure of 

subassembly k (k∈SA(j)) 

Other notation VARI-METRIC notations.  

mjst  — stock level of item j at location m. st – matrix of all stock levels in the 

system. 

mjPL  — number of type j items in the pipeline at the location m, i.e. under repair or 

in resupply. 

mjO  — Order-and-ship time of item j to location m from its supplier, a random 

variable with mean mjE O    and squared coefficient of variation 2
OmjC . 

mjBO  — number of backorders for item j at location m: { }max ,0mj mj mjBO PL ST= −  

stock
jc  — price of item j. 

cap
hmc  — price of repair capacity in repair shop h at location m. 

Notations of MCMS queueing systems 

N  — number of items in the queueing system. 

iλ   — arrival rate of item i. 

iµ   — service rate of item i. 
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iρ   — utilisation rate of item i, i i iρ λ µ=  

, µΛ   — overall arrival and service rates, i.e. 
1

N
ii

λ
=

Λ = ∑ , and 

1
i

i

N

i
kλ

µµ ρ
=

= Λ = Λ∑ , where the utilisation rate is kρ µ= Λ . 

ia   — fractions of arrival rates, i.e. i ia λ= Λ . 

iδ   — perturbations of service rates, i.e. ( )1 i iδ µ µ+ = . 

s   — vector containing the number of items in service per item class. 

w   — vector containing the number of items in the queue per item class. 

( ),nP w s  — probability of system state ( ),w s  with n items in the system 

( )sµ  — sum of service rates of all items in service, i.e. ( ) 1

N
i ii

s sµ µ
=

= ∑ . 

( )sδ   — average perturbation of service rates of all items in service, i.e. 

( ) 1

1 N
i ii

s s
k

δ δ
=

= ∑ . 

ix   — the ith component of any vector x . 

ie   — a vector of dimension N with component i equal to 1 and all other 

components equal to 0; this vector is used to indicate the changes in vectors 

w  and s  during transitions from state to state. 

ije   — denotes the jth component of the vector ie , so ije  = 1 if i = j and 0 

otherwise. 

x   — denotes the sum of all components of any vector x . 

nP  — matrix of server states probabilities given that there are n items in the 

queueing system. 

1−Z  — matrix of transition probabilities from server states with n – 1 server to n 

servers ( n k> ). 

nQ  — matrix of transition probabilities from server states with n – 1 server to n 

servers ( n k≤ ). 
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,i m
nI  — diagonal matrix indicating states with m items of type i with 1 and 0 

elsewhere given n items in the system. 

is
nχ  — diagonal matrix indicating numbers of items of type i in the service in 

corresponding service state and given n numbers in the system 

Ri — numbers of items of type i in the system. 

Si — numbers of items of type i in the service. 

qi — numbers of items of type i in the queue. 

 

Notations of MCMS priority queueing systems 

Nh (Nl)  — numbers of high (low) priority items in the system.  

h
iλ , ( l

jλ ) — arrival rates of high (low) priority jobs of class i (j) into the system.  

h
iµ , ( l

jµ ) — service rates of high (low) priority jobs of class i (j).  

h
iρ , ( l

jρ ) — utilisation rates of high (low) priority jobs i (j) the system, 

h h h
i i iρ λ µ=  ( l l l

i i iρ λ µ= ).  

, ( ),  , ( )h l h lµ µΛ Λ  — overall arrival and service rates of high (low) priority class, i.e. 

1

hN hh
ii

λ
=

Λ = ∑  (
1

lN ll
ii

λ
=

Λ = ∑ ) and 
1

h h
i
h

i

Nh h h h
i

kλ
µ

µ ρ
=

= Λ = Λ∑ , 

(
1

l l
i
l

i

Nl l l l
i

kλ
µ

µ ρ
=

= Λ = Λ∑ ), where the overall utilisation rates for each 

priority class are h h hkρ µ= Λ , l l lkρ µ= Λ  and the total utilisation 

rate is h lρ ρ ρ= + . 

h
ia , ( l

ja ) — fractions of arrival rates, i.e. h h h
i ia λ= Λ , ( l l l

j ja λ= Λ ). 

h
iδ , ( l

jδ ) — perturbations of service rates, i.e. ( )1 h h h
i iδ µ µ+ = , 

( )1 l l l
j jδ µ µ+ = . 

γ   — ratio f the service rates for high and low priority items, i.e. l hγ µ µ= . 
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ni (mj)  — number of high (low) priority items of type i (j) and by n (m) the total 

number of high (low) priority items in the system. 

hs  ( ls ) — vectors containing the number of high (low) priority items in service 

per item class. 

hw  ( lw ) — vectors containing the number of high (low) priority items in the queue 

waiting for first service per item class (these vectors exclude postponed 

items). 

lr   — vector containing the number of postponed low priority items per item 

class. 

( ), , , , ,h h l l l
n mP w s w s r  — probability of system state ( ), , , ,h h l l lw s w s r  with n (m) items 

of high (low) priority in the system 

( ),h ls sµ   — sum of service rates of all items in service, i.e. 

( ) 1 1
,

h lN Nh h l lh l
i i i ii i

s s s sµ µ µ
= =

= +∑ ∑ . 

( ),h ls sδ   — average perturbation of service rates of all items in service, i.e. 

( ) ( )1 1

1,
h lN Nh h l lh l

i i i ii i
s s s s

k
δ δ δ

= =
= +∑ ∑ . 

ix   — the ith component of any vector x . 

h
ie  ( l

ie ) — a vector of dimension Nh (Nl) with component i equal to 1 and all other 

components equal to 0; this vector is used to indicate the changes in 

vectors hw  and hs  ( lw , ls  and lr ) during transitions from state to 

state. 

h
ije  ( l

ije ) — denotes the jth component of the vector h
ie  ( l

ie ), so h
ije  ( l

ije ) = 1 if i = j 

and 0 otherwise. 

x   — denotes the sum of all components of any vector x . 

,n mP  — vector server states probabilities given that there are n(m) high(low) 

priority items in the queueing system and n > k. 
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tP  — vector server states probabilities given that there are t items in the 

queueing system and there is no high priority items in the queue. 

( )v ξ  — generating vector-function of server states probabilities given there is 

no high priority items in the queue. 

tQ  — matrix of transition probabilities from server states with t – 1 items in 

the system to t items in the system (no high priority items in the queue). 

x
nχ  — diagonal matrix indicating numbers x in the corresponding service state 

given n numbers in the system 

h
iR  — numbers of high priority items of type i in the system. 

l
iR  — numbers of low priority items of type i in the system. 

h
iS  — numbers of high priority items of type i in the service.  

l
iS  — numbers of low priority items of type i in the service. 

h
iq  — numbers of high priority items of type i in the queue. 

l
iq  — numbers of low priority items of type i in the queue. 

 

Appendix B. Optimal priority assignment  

In this appendix, we prove that under certain conditions the optimal priority assignment in a 

preemptive priority queueing system should be done according to the price / service time 

ratio (cf. Chapter 8). We prove it only for a single-server preemptive priority queueing 

system with multiple priority groups and one item class per priority group. We follow the line 

of the proof by Buzacott and Shantikumar (1993) for the non-preemptive priority M/M/1 

queue.  

Consider a single-server queue with N item types. Each unit of time that an item of type i 

spends in the system (waiting and service) costs ci
3.  The system has multiple priorities and 

each priority class contains only one type of item (so, we have N priority classes). We denote 

                                                 
3 If the holding cost rate is identical for all items, we can replace the holding costs per unit of 
time by the item procurement costs, as we did in Chapter 8. 
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by π(i) the priority index of item i, where item i has priority over item j if π(i) < π(j). So, the 

highest priority item has index π(i) = 1 and the lowest priority item has index π(i) = N. Let 
( )i

iE Rπ    be the expected number of type i items in the system, given that item i has priority 

index π(i). Then, the total expected cost per unit of time of all items in the system as function 

of the priority assignment π can be expressed as follows: 

 

( )

1

N
i

i i
i

C c E Rπ

=

 =  ∑  

 

Without loss of generality, we assume that all items are numbered in decreasing order of 

their cost / service time ration ci/E[Si]. Then, we have to prove that the priority assignment π 

is optimal if and only if it is done according to the cost / service time ratio, i.e. π(j) = j (j = 

1,…,N).  

To prove this, we proceed as follows. Consider an arbitrary priority assignment π π′ ≠ . 

If we can show that the priority assignment π ′  can always be improved, we have proven that 

π is optimal.  

Given that π π′ ≠ , there exists at least one index j, such that ( ) ( )1j jπ π′ ′> + , i.e. item j 

has lower priority than item j + 1. Now we derive a priority assignment π ′′ from π ′  by 

interchanging the priorities of item j and item j + 1, i.e. ( )jπ ′′  = ( )1jπ ′ +  and ( )1jπ ′′ +  = 

( )jπ ′ . Let us compare the total costs prices of all items in the system for the two priority 

assignments π ′  and π ′′ :  

 

( )

1

N
i

i i
i

C c E Rπ ′

=

 ′ =  ∑  and ( )

1

N
i

i i
i

C c E Rπ ′′

=

 ′′ =  ∑ . 

 

The number of type j items in a preemptive priority M/M/1 queue, given that the priority 

assignment coincides with the order of items, can be calculated as (Gross and Harris, 1998): 

 

( ) ( ) ( )
( )

( )

( )

( )

( )

( )

( )

1 1

1 1 1

1

1 1

1 1 1
1 1 1

j
j i i ij j j

j j j j

i i i
i i i

E R

π

π ππ

π π π

π π π

λ ρ µ λ µ

ρ ρ ρ

− −

− − −

′

= ′ ′′

′ ′ ′− −

′ ′ ′
= = =

  = +      
− − −        

    

∑

∑ ∑ ∑
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Let us define 
( ) ( )

( )

1 1

1

1
1

j

j i i
i

W
π

π π
ρ µ− −

′ −

− ′ ′
=

= ∑  and 
( )

( )

1

1

1
1

j

j i
i

π

π
ρ −

′ −

− ′
=

Ρ = ∑ . Then the difference between 

the total cost of the priority assignments π ′  and π ′′  can be expressed as follows: 

 
( ) ( ) ( ) ( )

( )
( )( ) ( )

( )
( )( ) ( )

1 " 1
1 1 1 1

1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

j j j j
j j j j j j j j

j j j j j j j j

j j j j

j j j j j j j j j j

j j j j j j j

j j j

C C c E R c E R c E R c E R

c W c

c W c

c W

π π π π

λ ρ µ λ µ
ρ

λ ρ µ ρ µ λ µ
ρ ρ ρ ρ

λ

′ ′ ′′ ′′+ +
+ + + +

−

− − −

+ + − + + + + +

− + − −

+ + −

       ′ ′′− = + − −       

+
= +

− Ρ − − Ρ − Ρ

+ +
+ +

− Ρ − − − Ρ − − Ρ −

−
( )

( )( ) ( )
( )

( ) ( ) ( )

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1 1

1 1 1

1 1 1

j j j j j

j j j j

j j j j j j j j j j

j j j j j j j

c

c W c

ρ µ λ µ
ρ

λ ρ µ ρ µ λ µ
ρ ρ ρ ρ

+ + + + +

− + − −

− + +

− + − + − +

+
−

− Ρ − − Ρ − Ρ

+ +
− +

− Ρ − − Ρ − − − Ρ −

 

 

After lengthy computations with the help of MapleTM, we obtain 

 

( ) ( ) ( )
( )( )( )( )

( )( ) ( ) ( )
( )( ) ( ) ( )

1
1 1 1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

j i j i j j
j j j j j j j

j i j i j j j i j j i j

j i j i j j j i j i j j

j i j i j j j i j j i j

C C c c W
ρ ρ

µ µ ρ ρ
ρ ρ ρ ρ

ρ µ ρ µ

ρ ρ ρ ρ

− − +
+ + + −

− − + − + −

− − + − − +

− − + − + −

 − Ρ + − Ρ − −′ ′′− = − 
− Ρ − Ρ − − − Ρ − − Ρ −

− Ρ − Ρ − + − Ρ − Ρ − + 
− Ρ − Ρ − − − Ρ − − Ρ − 

 

It is not difficult to see that the expression in braces is always greater then 0. Then, the 

costs C′  are lower than the costs C′′  if and only if the cost / service time ratio 

1

1
1 1

j

j

c
j jE ST

c µ+

+
+ +  

=  of item j + 1 is lower than cost / service time ratio of item j.  

So, we conclude that we can improve any priority assignment π π′ ≠ , unless two items 

have the same cost / service time ratio. In the latter case, we can find an alternative 

assignment π ′′  having the same costs by interchanging two items as described above, such 

that the priority index of item j is decreased. By iteration, we either can find an improved 

assignment of π ′ , or that π ′  has the same costs as π. This completes our proof.  
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